Introduction The aXiom AX198A-3D is an Automotive Qualified Capacitive Multi-touch controller with the very highest performance, for use in demanding applications across markets such as Automotive, Industrial, White Goods and Medical. In addition to supporting state-of-the-art Capacitive Touch Sensing, the device also features integrated force sensing and haptic feedback output event triggers, to allow creation of rich user interfaces. Use of these features allows the device to sense not only conventional contact type touches, but also to detect the force applied to the touch sensor cover lens. The high performance acquisition engine enables the touchscreen controller to sense regular contacts and gloves, as well as detecting pre-contact proximity and hover finger targets above the touchscreen surface. Additionally, the same sensing performance allows designers to use thick plastic front lenses, curved or non-uniform thickness lenses and even to sense through a small air gap. Industry leading water rejection and wet finger tracking is also included. Figure 1-1: aXiom 3D Sensing Capabilities Combined with the ability to output region based haptic feedback commands to a 3rd party driver, the device becomes the central controller for a holistic user interface system, implementing 3D proximity, 3D hover, 3D overlays/lenses, touch, force and haptic feedback. A WindowsTM based software package, TouchHub2, is provided with the AX198A-3D to ease design and tuning tasks. This allows the designer to input simplified design choices and enables TouchHub2 to automatically create optimized tuning configurations. Additionally, a digitizer driver is available for Linux. ### Features at a Glance #### **Capacitive Multi-touch Controller** - Ultra high SNR: >80dB. - Supports up to 198 touch sensing channels and a maximum of 6144 sensing nodes¹. - Flexible channel routing allows arbitrary touch sensor aspect ratios. - Supports large ultra-wide aspect ratio sensors (over 5:1). - Concurrently supports 2D (xy), 1D (slider) and 0D (button) sensors. - Touch sensing through very thick plastic lenses and/or air gaps. - Supports non-uniform lens thickness. - Supports both 3D proximity and 3D hover sensing. - Supports up to 2 Dial On Display mechanical rotors. - All touches reported at a frame rate of up to 250Hz². - Glove support without switching modes. - Water suppression and wet finger tracking. - Low emissions, low drive amplitude, high immunity to conducted interference. - Host connection using SPI or I²C slave with interrupt. - 3V3 and 1V8 supply, no high voltage generators needed. - Independent I/O voltage supporting 1.8V to 3.3V host signaling. - Optional external synchronization with display drivers for highest SNR. ### **Force Controller** - Supports up to 4 force sensing channels. - Can detect displacement of cover lens < 10um. - Supports multi-force. - Force measured concurrently with touch. #### **Haptic Trigger** - User definable region based haptics. - Configurable hot-spot maps and actions. - Trigger uses master I²C or GPIO output to 3rd party driver chip. #### **General** - Register based tuning with non-volatile configuration storage. - Field upgradable firmware. - Sophisticated Built-In-Self-Test routines and diagnostics. - Automotive AEC-Q100 grade 2 qualified (LQFP only). - -40°C to +105°C ambient operating temperature. - Available in LFBGA256 and LQFP256 packages. - TouchHub2 evaluation and support software for design and tuning. Doc: TNxD00376 Pg: 1 of 69 Rev: C6 ¹Example: largest **square** sensor is 78 x 78 channels. ²Subject to configuration. # 2 Ordering Information # **LQFP** Package | Device | Package | Part Number | Shipping | |---------------------------------|--|-------------|---------------------| | AX198A-3D LQFP256
Industrial | LQFP256 Exposed Pad
28x28x1.4mm 0.4 pitch | 838-030007 | 36 devices per tray | | AX198A-3D LQFP256
Automotive | LQFP256 Exposed Pad
28x28x1.4mm 0.4 pitch | 838-030006 | 36 devices per tray | # LFBGA Package | Device | Package | Part Number | Shipping | |-----------------------------------|-----------------------------------|-------------|----------------------| | AX198A-3D LFBGA256
Engineering | LFBGA256
13x13x1.4mm 0.8 pitch | 838-031001 | 160 devices per tray | | AX198A-3D LFBGA256
Industrial | LFBGA256
13x13x1.4mm 0.8 pitch | 838-031003 | 160 devices per tray | **NOTE**: These devices will arrive with default bootloader and firmware installed, you will then need to load your chosen firmware version once mounted on your PCB. Doc: TNxD00376 Pg: 2 of 69 Rev: C6 # **Contents** | ı | Introduction | ı | |---|---|--| | 2 | Ordering Information | 2 | | 3 | Device Pinout 3.1 Pin Map 3.1.1 LQFP256 3.1.2 LFBGA256 3.2 Pin Table 3.2.1 LQFP256 3.3 Pin Table 3.3.1 LFBGA256 | 6
7
8
8
12 | | | 3.3.1 LFBGA230 | 12 | | 4 | Pin Descriptions 4.1 A053, C047, D047, E047 4.2 SHIELD2DCTS 4.3 GND 4.4 VDDA 4.5 VDDC 4.6 VDDI 4.7 SLVnIRQ 4.8 SLVSDA / SCK 4.9 SLVSCL / nSS 4.10 SLVI2CADDRSEL / MOSI 4.11 nSLVI2C / MISO 4.12 MSTCOMMS0 4.13 MSTCOMMS1 4.14 MSTCOMMS1 4.15 MSTCOMMS3 4.16 GPIO04 4.17 GND 4.18 nRESET 4.19 AUXO3 4.20 SHIELDAUX | 16
16
16
16
17
17
17
17
18
18
18
18
18 | | 5 | Reference Schematic | 19 | | 6 | Sensing 6.1 Sensing Overview 6.2 Touch Sensing 6.2.1 2D (xy) Sensing 6.2.2 1D (slider) and 0D (button) Sensing 6.3 Variable Thickness Lenses 6.4 Dial On Display 6.5 Force Sensing 6.6 Pre-contact Sensing (3D Prox and Hover) 6.7 EMC Features 6.8 Water Suppression 6.9 Sensor Compatibility 6.10 Sensor Protection | 24
24
27
29
30
31
33
34
36
38 | | 7 | Host Interfaces 7.1 Available Interfaces 7.2 Mode Selection 7.3 Slave I ² C Mode 7.3.1 Slave Address Selection 7.3.2 Connections 7.3.2 Connections 7.3.3 I ² C Protocol 7.4 Slave SPI Mode | 39
40
40
40
40 | | 7.4.1 Device Selection | | |---|----| | 7.4.2 Connections | | | 7.4.3 SPI Protocol | 41 | | 8 Haptics | 42 | | 9 Programming Model | 43 | | 10 Device Characteristics | 44 | | 10.1 Absolute Maximum Ratings | 44 | | 10.2 Operational Ratings | 45 | | 10.2.1 Operating Conditions | | | 10.2.2 Power Requirements | | | 10.2.3 Power Sequencing | | | 10.2.4 Startup Time | | | 10.2.5 Reduced Power Mode | | | 10.2.6 CMOS I/O Characteristics | | | 10.2.7 Slave PC Characteristics | | | 10.2.9 Master I ² C Characteristics | | | 10.2.10 Capacitance Ranges and Drive Limits | | | 10.2.11 Non-volatile Memory Characteristics | | | 10.2.12 Device BIST Capabilities | | | 10.2.13 Sensor BIST Capabilities | | | 10.2.14 2D CTS Diagonal Size Range Guide | | | Annondiy A. Berskere Drewings | 55 | | Appendix A Package Drawings A.1 LQFP256-EP28281404 | | | A.1.1 Package Information | | | A.1.2 Footprint Information | | | A.1.3 Layout and Routing Considerations for VDDA tracks | | | A.1.4 Package Thermal Characteristics | | | A.1.5 PCB Footprint Notes | | | A.1.6 Soldering | | | A.2 LFBGA256 | | | A.2.1 Package Information | | | A.2.2 Footprint Information | | | A.2.3 Layout and Routing Considerations for VDDA tracks | 63 | | A.2.4 Package Thermal Characteristics | 66 | | A.2.5 Soldering | 66 | | Appendix B References | 67 | | Appendix C Legal Copyright and Disclaimer | 68 | | Appendix D Document History | 69 | | | | # **List of Figures** | 1-1 aXiom 3D Sensing Capabilities 3.1.1-1 LGFP256 Device Pinout (top view) 3.1.2-1 LFBGA256 Device Pinout (top view) 5-1 Reference Schematic (LGFP256) 5-2 Reference Schematic (LGFP256) 6-1-1 Acquisition Engine Frame Structure 6.1-2 Simplified System Architecture 6.1-3 Simplified Sensing Architecture 6.2.1-1 Channel Naming Convention 6.2.1-2 Traditional vs. aXiom Channel Allocation 6.2.1-1 Region Types 6.3-1 Example of a Flat Sensor and Variable Thickness Lens 6.5-1 Single-Force System Implementation, Non-segmented CDS 6.5-2 Multi-Force System with Four Force Channels, Quadrant-segmented CDS 6.5-1 Example Common Mode Noise From "Other" Equipment 6.8-1 Different Behaviors With Abs-cap and Trans-cap Measurements With Water and Touch 7.2-1 Communication Mode Selection 7.3.2-1 Slave I ² C Connections 7.4.2-1 Slave I ² C Connections 8-1 Master I ² C Connections to 3' rd Party Device(s) 10.2.7-1 Typical I ² C Transaction and Parameters 10.2.8-1 Typical I ² C Transaction and Parameters 10.2.14-1 2D CTS Diagonal Size Range Guide A.1.1-1 Package Drawing A.1.3-1 C-shaped power routing, balanced amongst all VDDA pins. A.1.3-2 Note the use of the widest possible tracking and multiple vias for all VDD tracks A.1.3-3 Note the wide tracking joining all VDDC pins. A.2.1-1 Pootprint Drawing A.2.3-1 C-shaped power routing, balanced amongst all VDDA pins. | | 6
7
19
20
22
23
23
24
26
27
29
31
32
33
34
36
39
40
41
42
48
49
54
55
56
58
61
62 |
--|----|--| | A.2.3-2 Note the wide tracking joining all VDDC pins | | | | A.2.3-4 Note that shield seperation is needed between TX and RX channels. This will vary on the | ne | | | profile used in the device | | | | A.2.3-5 Top layer breakout and suggested decoupling placements | | | | | • | | | I to be a City of the control | | | | List of Tables | | | | 3.2.1-1 LQFP256 Pin Table 3.2.1-2 Pin Classes 3.3.1-1 LFBGA256 Pin Table 3.3.1-2 Pin Classes 7.3.1-1 Slave I ² C Address Selection 10.1-1 Absolute Maximum Ratings 10.2.1-1 Operating Conditions 10.2.2-1 Power Requirements 10.2.6-1 CMOS I/O Characteristics (1.8V) 10.2.6-2 CMOS I/O Characteristics (3.3V) 10.2.7-1 Timings 10.2.8-1 Timings 10.2.10-1 Capacitance Ranges and Drive Limits 10.2.10-2 REFCAP Requirements | | 11
15
15
40
44
45
45
47
47
48
49
51 | | 10.2.11-1 Non-volatile Memory Characteristics | | 52 | ## 3 Device Pinout - 3.1 Pin Map - 3.1.1 LQFP256 Figure 3.1.1-1: LQFP256 Device Pinout (top view) Doc: TNxD00376 Pg: 6 of 69 Rev: C6 #### 3.1.2 LFBGA256 3 5 8 1 2 4 6 7 9 10 11 12 13 14 15 16 Α VDDA $C_{\mathbf{I}}$ C4 င္တ VDDA C16 C_{19} VDDA C20 VDDA $\widetilde{D0}$ D₆ 012 E17 SHIELD2DCTS E1 **D4** В D2 E12 D14 D16 D19 E20 C3 C5 C <u>E3</u> C₂ C10 C13 E14 E16 D18 D7 E19 D21 **A3** AZ AI $\widetilde{C21}$ D GND D10 D13 C17 E18 D22 E21 C₆ Ε () A7 GND <u>E5</u> C8 C_{11} E13 D₁₅ AUX2 D₁₇ VDDA AUX3 F Alz 011 AUX1 SHIELDAUX VDDC A10 C14 A14 A13 $\widetilde{A11}$ $\widetilde{\mathsf{GND}}$ <u>E6</u> Ď8 E15 AUXO Al8 A15 **E8** G_{ND} G G_{ND} A19 A17 A16 E11 GND PRESET GND $\widetilde{\mathsf{GND}}$ \widetilde{GND} A25 A24 AZZ AZI E10 Н A26 A23 C12 GPIO3 GPIO2 GPIO1 GPIO0 MSTCOMMS2 GND VDDCSIVIZ CADDRSEL / NOSI GPIO4 TCOMMS1 OMMS0 SIVIZE / MOSI A29 A30 A31 A32 A33 E34 J **A27** A28 E35 K A36 **A37** A39 E32 <u>A38</u> E33 GND SLVNIRQ D35 \widetilde{GND} A34 A35 \widetilde{GND} \widetilde{GND} \widetilde{GND} L A41 GND VDDI A42 Ã43 E31 E37 D39 E47 D47 A47 E29 D29 D31 D37 A45 Μ GND C39 C47 V_{DDA} D34 C41 E46 D46 VDDA A50 C27 C59 C37 D42 N E28 C31 C34 A48 A49 E27 E38 E40 C46 E45 D45 D26 P E25 E26 D₂₅ D28 D33 E36 D38 D40 C42 D43 A52 E30 A51 C45 E44 R E41 C43 A53 HIELD2DCTS C24 C25 C26 C58 D30 C33 D36 C38 C40 C44 D44 T VDDA VDDA VDDA D23 $\widetilde{D41}$ D27 D32 E39 E42 Figure 3.1.2-1: LFBGA256 Device Pinout (top view) Doc: TNxD00376 Pg: 7 of 69 Rev: C6 # 3.2 Pin Table ### 3.2.1 LQFP256 | Pin
Number | Name | Class | Domain | Function | If not required | Notes | |---------------|-------------|------------|--------------|---------------------------------------|--|--| | 1 | C0 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 2 | SHIELD2DCTS | AO | VDDA | 2DCTS shield pin | Not applicable | Shield driver for 2DCTS sense pins. | | 3 | A0 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 5 | A1 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 6 | A2
A3 | AIO
AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 7 | A4 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 8 | A5 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 9 | A6 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 10 | A7 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 11 | A8 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 12 | A9 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 13 | A10 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 14 | A11 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 15 | A12 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 16 | GND | PWR | | Supply and signal reference | Not applicable | | | 17
18 | VDDA
A13 | PWR
AIO | VDDA | Analogue supply | Not applicable Connect to SHIELD2DCTS | | | 19 | A14 | AIO | VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS | | | 20 | A15 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 21 | A16 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 22 | A17 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 23 | A18 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 24 | A19 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 25 | A20 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 26 | A21 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 27 | A22 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 28 | A23 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 29 | A24 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 30
31 | A25 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 32 | A26
GND | AIO
PWR | VDDA | Sense pin Supply and signal reference | Connect to SHIELD2DCTS Not applicable | | | 33 | VDDC | PWR | | Core supply | Not applicable | Output from internal LDO. | | 34 | A27 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Culpul north internal 250. | | 35 | A28 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 36 | A29 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 37 | A30 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 38 | A31 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 39 | A32 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 40 | A33 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 41 | A34 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 42 | A35 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 43 | A36 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as C48. | | 44
45 | A37
A38 | AIO
AIO | VDDA
VDDA | Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | Can be aliased to act as D48. Can be aliased to act as E48. | | 45 | A39 | AIO | VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as C49. | | 47 | A40 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as C47. | | 48 | GND | PWR | 100/(| Supply and signal reference | Not applicable | Carried analog to dot as 5477 | | 49 | VDDA | PWR | | Analogue supply | Not applicable | | | 50 | A41 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as E49. | | 51 | A42 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as C50. | | 52 | A43 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as D50. | | 53 | A44 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as E50. | | 54 | A45 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as C51. | | 55 | A46 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as D51. | | 56 | A47 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as E51. | | 57 | A48 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as C52. | | 58
59 | A49 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | Can be aliased to act as D52. Can be aliased to act as E52. | | 60 | A50
A51 | AIO
AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | Can be aliased to act as E52. Can be aliased to act as C53. | | 61 | A52 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as D53. | | 62 | A53 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as E53. | | 63 | SHIELD2DCTS | AO | VDDA | 2DCTS shield pin | Not applicable | Shield driver for 2DCTS sense pins. | | 64 | C23 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 65 | D23 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 66 | E23 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 67 | VDDA | PWR | | Analogue supply
 Not applicable | | | 68 | GND | PWR | | Supply and signal reference | Not applicable | | | 69 | C24 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 70 | D24 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 71 | E24 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 72 | C25 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 73
74 | D25
E25 | AIO
AIO | VDDA
VDDA | Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 75 | C26 | AIO | VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | | | I AIO | I VUUM | oer oe piri | COLLIDED TO SHIEFDSDC19 | | Doc: TNxD00376 Pg: 8 of 69 Rev: C6 | Pin
Number | Name | Class | Domain | Function | If not required | Notes | |---------------|-------------|------------|--------------|------------------------------|--|--| | 76 | D26 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 77 | E26 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 78 | C27 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 79 | D27 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 80 | E27 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 81 | C28 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 82 | D28 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 83 | E28 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 84 | C29 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 85 | GND | PWR | | Supply and signal reference | Not applicable | | | 86 | VDDA | PWR
AIO | VDDA | Analogue supply | Not applicable Connect to SHIELD2DCTS | | | 87 | D29 | | | Sense pin | | | | 88 | E29 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 89 | C30 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 90
91 | D30
E30 | AIO
AIO | VDDA
VDDA | Sense pin | Connect to SHIELD2DCTS | | | 91 | C31 | AIO | VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 93 | D31 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 93 | E31 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 95 | C32 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 96 | D32 | AIO | VDDA | | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 97 | E32 | AIO | VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 98 | C33 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 99 | D33 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 100 | E33 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 101 | C34 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 102 | D34 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 102 | E34 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 104 | VDDA | PWR | VDD/ | Analogue supply | Not applicable | | | 105 | C35 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 106 | D35 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 107 | E35 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 108 | C36 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 109 | D36 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 110 | E36 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 111 | C37 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 112 | D37 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 113 | E37 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 114 | C38 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 115 | D38 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 116 | E38 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 117 | C39 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 118 | D39 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 119 | E39 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 120 | C40 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 121 | D40 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 122 | E40 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 123 | C41 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 124 | D41 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 125 | E41 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 126 | C42 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 127 | D42 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 128 | E42 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 129 | GND | PWR | | Supply and signal reference | Not applicable | | | 130 | VDDA | PWR | 1/004 | Analogue supply | Not applicable | | | 131 | C43 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 132 | D43 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 133
134 | E43
C44 | AIO
AIO | VDDA
VDDA | Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | | | | | Sense pin | | | | 135
136 | D44
E44 | AIO
AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 137 | C45 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 137 | D45 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 139 | E45 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 140 | C46 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 141 | D46 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 141 | E46 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 143 | C47 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 144 | D47 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 145 | E47 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 146 | SHIELD2DCTS | AO | VDDA | 2DCTS shield pin | Not applicable | Shield driver for 2DCTS sense pins. | | 147 | VDDI | PWR | V DDA | I/O supply | Not applicable | 6 ilicia dilivoi loi 20010 30130 pii is. | | 148 | GND | PWR | | Supply and signal reference | Not applicable | | | 149 | SLVnIRQ | OD | VDDI | Slave report ready interrupt | Leave no connect | Requires additional pull up if used. | | 150 | GND | PWR | , , , , | Supply and signal reference | Not applicable | roquios adamonal pail ap il acca. | | .50 | 3110 | | | | applicable | | | Pin
Number | Name | Class | Domain | Function | If not required | Notes | |-------------------|----------------------|--|--------------|---|--|--| | 151 | SLVSDA / SCK | ODwpu
(may
change
to lwpu
during
startup) | VDDI | Slave i ² C data OR SPI SCK | Not applicable | Requires additional pull up if using i ² C mode. | | 152 | SLVSCL / nSS | ODwpu
(may
change
to lwpu
during
startup) | VDDI | Slave I ² C clock OR SPI nSS | Not applicable | Requires additional pull up if using i ² C mode. | | 153 | SLVI2CADDRSEL / MOSI | lwpu | VDDI | Slave I ² C address select OR
SPI MOSI | Not applicable | In I ² C mode, controls address. In SPI mode becomes
MOSI input from host. | | 154 | nSLVI2C / MISO | lwpu
(may
change
to O
during
startup) | VDDI | Slave I ² C mode OR SPI MISO | Not applicable | Sampled at reset; if low selects I ² C mode, if high selects
SPI mode and becomes MISO output to host. | | 155 | MSTCOMMS0 | O / I /
ODwpu | VDDI | Master Comms port | Leave no connect | | | 156 | MSTCOMM\$1 | O / I /
ODwpu | VDDI | Master Comms port | Leave no connect | | | 157 | MSTCOMMS2 | O/I/
Odwpu | VDDI | Master Comms port | Leave no connect | | | 158
159 | MSTCOMMS3
GPIO0 | O / I
IOwpu | VDDI
VDDI | Master Comms port General purpose I/O | Leave no connect | | | 160 | VDDI | PWR | VDDI | I/O supply | Not applicable | | | 161 | GND | PWR | | Supply and signal reference | Not applicable | | | 162 | GPIO1 | IOwpu | VDDI | General purpose I/O | Leave no connect | Optionally serves as HSYNC input. | | 163
164 | GPIO2
GPIO3 | IOwpu
IOwpu | VDDI
VDDI | General purpose I/O General purpose I/O | Leave no connect Leave no connect | Optionally serves as VSYNC/EXTSYNC input. | | 165 | GPIO4 | lOwpu | VDDI | General purpose I/O | Leave no connect | | | 166 | GND | PWR | | Supply and signal reference | Not applicable | | | 167
168 | GND
GND | PWR
PWR | | Supply and signal reference Supply and signal reference | Not applicable Not applicable | | | 169 | GND | PWR | | Supply and signal reference | Not applicable | | | 170 | nRESET | lwpu | VDDI | Hardware reset | Not applicable | May require additional bypass capacitor to GND for best EMC. | | 171 | VDDI | PWR | | I/O supply | Not applicable | EMC. | | 172 | GND | PWR | | Supply and signal reference | Not applicable | | | 173 | VDDC | PWR | | Core supply | Not applicable | Output from internal LDO. | | 174
175 | VDDA
AUX0 | PWR
AIO | VDDA | Analogue supply Auxiliarly sense pin | Not applicable
Leave no connect | Sense pin for pressSense. | | 176 | AUX1 | AIO | VDDA | Auxiliarly sense pin | Leave no connect | Sense pin for pressSense. | | 177 | AUX2 | AIO | VDDA | Auxiliarly sense pin | Leave no connect | Sense pin for pressSense. | | 178
179 | AUX3
SHIELDAUX | AIO
AO | VDDA
VDDA | Auxiliarly sense pin Auxiliarly shield pin | Leave no connect Leave no connect | Sense pin for pressSense. Shield driver for AUX sense pins. | | 180 | SHIELD2DCTS | AO | VDDA | 2DCTS shield pin | Not applicable | Shield driver for 2DCTS sense pins. | | 181 | E22 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 182 | D22
C22 | AIO | VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS | | | 183
184 | E21 | AIO
AIO | VDDA
VDDA | Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 185 | D21 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS |
| | 186 | C21 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 187
188 | E20
D20 | AIO
AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 189 | C20 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 190 | VDDA | PWR | | Analogue supply | Not applicable | | | 191
192 | GND
E19 | PWR
AIO | VDDA | Supply and signal reference Sense pin | Not applicable Connect to SHIELD2DCTS | | | 193 | D19 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 194 | C19 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 195
196 | E18
D18 | AIO
AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 190 | C18 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 198 | E17 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 199
200 | D17
C17 | AIO
AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 200 | E16 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 202 | D16 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 203
204 | C16
E15 | AIO
AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 204 | D15 | AIO | VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 206 | C15 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 207 | E14 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 208
209 | D14
C14 | AIO
AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 210 | E13 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 211 | D13 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 212
213 | C13
E12 | AIO
AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | 214 | D12 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 215 | C12 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 216
217 | VDDA
GND | PWR
PWR | | Analogue supply Supply and signal reference | Not applicable Not applicable | | | 218 | EII | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 219 | D11 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 220 | C11 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 221
222 | E10
D10 | AIO
AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | | C10 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 223 | CIU | , | | | | | | 223
224
225 | E9
D9 | AIO
AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | Doc: TNxD00376 Pg: 10 of 69 Rev: C6 | Pin
Number | Name | Class | Domain | Function | If not required | Notes | |---------------|------|-------|--------|-----------------------------|------------------------|-------| | 226 | C9 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 227 | E8 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 228 | D8 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 229 | C8 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 230 | E7 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 231 | D7 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 232 | C7 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 233 | E6 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 234 | D6 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 235 | C6 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 236 | E5 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 237 | GND | PWR | | Supply and signal reference | Not applicable | | | 238 | VDDA | PWR | | Analogue supply | Not applicable | | | 239 | D5 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 240 | C5 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 241 | E4 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 242 | D4 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 243 | C4 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 244 | E3 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 245 | D3 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 246 | C3 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 247 | E2 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 248 | D2 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 249 | C2 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 250 | E1 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 251 | D1 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 252 | C1 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 253 | GND | PWR | | Supply and signal reference | Not applicable | | | 254 | VDDA | PWR | | Analogue supply | Not applicable | | | 255 | EO | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | 256 | D0 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | Table 3.2.1-1: LQFP256 Pin Table | Class | Description | |-------|--| | PWR | Power pin | | Al | Analogue input | | AO | Analogue output | | AIO | Analogue IO | | I | CMOS input (no pull up) | | lwpu | CMOS input with weak pull up ³ | | 0 | CMOS push-pull output | | ODwpu | CMOS Open drain with weak pull up ⁴ | | OD | CMOS Open drain no pull up | | Ю | CMOS input/output | | lOwpu | CMOS input/output with weak pull up ⁴ | Table 3.2.1-2: Pin Classes As a general convention, communication pin names are prefixed with "SLV" or "MST" to designate Slave or Master. Pin names with an "n" at the start of the function name designate an active-low signal e.g. MSTnIRQ is an active low interrupt from the Master. Also note that dual-mode pins are named (A) / (B), where (A) is the applicable name in the first mode and (B) in the second mode. Doc: TNxD00376 Pg: 11 of 69 Rev: C6 ³Pull up/down intended as level keeper only. # 3.3 Pin Table ### 3.3.1 LFBGA256 | Ball
Number | Name | Class | Domain | Function | If not required | Notes | |----------------|-------------|------------|--------------|-----------------------------|--|-------------------------------------| | A1 | VDDA | PWR | | Analogue supply | Not applicable | | | A2 | E0 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | A3 | C0 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | A4 | D0 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | A5
A6 | C1
VDDA | AIO
PWR | VDDA | Sense pin | Connect to SHIELD2DCTS Not applicable | | | A7 | C4 | AIO | VDDA | Analogue supply Sense pin | Connect to SHIELD2DCTS | | | A8 | D6 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | A9 | C9 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | A10 | D12 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | A11 | VDDA | PWR | | Analogue supply | Not applicable | | | A12 | C16 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | A13 | E17 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | A14
A15 | C19
C20 | AIO | VDDA
VDDA | Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | A16 | VDDA | PWR | VDDA | Sense pin Analogue supply | Not applicable | | | B1 | AO | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | B2 | SHIELD2DCTS | AO | VDDA | 2DCTS shield pin | Not applicable | Shield driver for 2DCTS sense pins. | | B3 | E1 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | B4 | E2 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | B5 | D1 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | B6 | D2 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | B7
B8 | D4
C7 | AIO | VDDA
VDDA | Sense pin | Connect to SHIELD2DCTS | | | B8
B9 | D9 | AIO | VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | B10 | E12 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | B11 | D14 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | B12 | D16 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | B13 | C18 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | B14 | D19 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | B15 | D20 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | B16 | E20 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | C1
C2 | A3
A2 | AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | C2
C3 | A2
A1 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | C4 | E3 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | C5 | C2 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | C6 | C3 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | C7 | C5 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | C8 | D7 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | C9 | C10 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | C10 | C13 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | C11
C12 | E14
E16 | AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | C13 | D18 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | C14 | E19 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | C15 | D21 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | C16 | C21 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | D1 | VDDA | PWR | | Analogue supply | Not applicable | | | D2 | A5 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | D3 | A4 | AIO | VDDA | Sense pin Supply and signal | Connect to SHIELD2DCTS | | | D4 | GND | PWR | | reference | Not applicable | | | D4 | GND | PWR | | Supply and signal reference | Not applicable | | | D5 | E4 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | D6
D7 | D3
D5 | AIO
AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | D/
D8 | D5
E7 | AIO | VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | D9 | D10 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS Connect to
SHIELD2DCTS | | | D10 | D13 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | D11 | C15 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | D12 | C17 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | D13 | E18 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | D14 | D22 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | D15 | C22 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | D16 | E21 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | E1
E2 | A9
A8 | AIO
AIO | VDDA
VDDA | Sense pin
Sense pin | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | | E3 | A0
A7 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | E4 | A6 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | E5 | GND | PWR | | Supply and signal reference | Not applicable | | | E6 | E5 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | E7 | C6 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | E8 | C8 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | E9 | C11 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | E10 | E13 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | Doc: TNxD00376 Pg: 12 of 69 Rev: C6 | Ball
Number | Name | Class | Domain | Function | If not required | Notes | |----------------|----------------------|--|--------------|--|--|---| | E11 | D15 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | E12 | D17 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | E13 | AUX2 | AIO | VDDA | Auxiliarly sense pin | Leave no connect | Sense pin for force sensing. | | E14 | AUX3 | AIO | VDDA | Auxiliarly sense pin
Sense pin | Leave no connect | Sense pin for force sensing. | | E15
E16 | E22
VDDA | AIO
PWR | VDDA | Analogue supply | Connect to SHIELD2DCTS Not applicable | | | F1 | A14 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | F2 | A13 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | F3 | A12 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | F4 | A11 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | F5 | A10 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | F6 | GND | PWR | | Supply and signal | Not applicable | | | го | | | | reference | | | | F7 | E6 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | F8 | D8 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | F9 | DII | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | F10 | C14 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | FII | E15 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Canas min for force consing | | F12
F13 | AUX0
AUX1 | AIO | VDDA
VDDA | Auxiliarly sense pin Auxiliarly sense pin | Leave no connect Leave no connect | Sense pin for force sensing. Sense pin for force sensing. | | F13 | SHIELDAUX | AO | VDDA | Auxiliarly shield pin | Leave no connect | Shield driver for AUX sense pins. | | F15 | SHIELD2DCTS | AO | VDDA | 2DCTS shield pin | Not applicable | Shield driver for 2DCTS sense pins. | | F16 | VDDC | PWR | VDDA | Core supply | Not applicable | Output from internal LDO. | | G1 | A20 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Odipar nonviniernar EBO. | | G2 | A19 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | G3 | A18 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | G4 | A17 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | G5 | A16 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | G6 | A15 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | G7 | E8 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | G8 | E9 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | G9 | E11 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | G10 | GND | PWR | | Supply and signal | Not applicable | | | G11 | GND | PWR | | reference
Supply and signal | Not applicable | | | G12 | GND | PWR | | reference
Supply and signal | Not applicable | | | G13 | nRESET | lwpu | VDDI | reference Hardware reset | Not applicable | May require additional bypass capacitor to GND for | | G14 | GND | PWR | | Supply and signal | Not applicable | best EMC. | | G15 | GND | PWR | | reference
Supply and signal | Not applicable | | | G16 | GND | PWR | | reference
Supply and signal | Not applicable | | | H1 | VDDC | PWR | | reference
Core supply | Not applicable | Output from internal LDO. | | H2 | A26 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Odipar iron internal EDO. | | H3 | A25 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | H4 | A24 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | H5 | A23 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | H6 | A22 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | H7 | A21 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | H8 | E10 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | H9 | C12 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | H10 | GND | PWR | | Supply and signal | Not applicable | | | | | | 1.00 | reference | | | | HII | GPIO3 | lOwpu | VDDI | General purpose I/O | Leave no connect | 0 11 11 1 10 10 17 17 17 11 11 | | H12 | GPIO2 | lOwpu | VDDI | General purpose I/O | Leave no connect | Optionally serves as VSYNC/EXTSYNC input. | | H13 | GPIO1
GPIO0 | IOwpu
IOwpu | VDDI
VDDI | General purpose I/O General purpose I/O | Leave no connect Leave no connect | Optionally serves as HSYNC input. | | H15 | MSTCOMMS3 | O/I | VDDI | | | | | | | 0/1/ | | Master Comms port | Leave no connect | | | H16 | MSTCOMMS2 | O/1/
Odwpu | VDDI | Master Comms port | Leave no connect | | | Jl | A27 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | J2 | A28 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | J3 | A29 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | J4 | A30 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | J5 | A31 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | J6 | A32 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | J7 | A33 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | J8 | E34 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | J9 | E35 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | J10 | GPIO4 | lOwpu | VDDI | General purpose I/O | Leave no connect | | | J11 | MSTCOMMS1 | O / I /
ODwpu | VDDI | Master Comms port | Leave no connect | | | J12 | MSTCOMMS0 | O / I /
ODwpu | VDDI | Master Comms port | Leave no connect | | | J13 | nSLVI2C / MISO | lwpu
(may
change
to O
during
startup) | VDDI | Slave I ² C mode OR SPI
MISO | Not applicable | Sampled at reset; if low selects I ² C mode, if high selects SPI mode and becomes MISO output to host. | | J14 | SLVI2CADDRSEL / MOSI | lwpu | VDDI | Slave I ² C address select
OR SPI MOSI | Not applicable | In I ² C mode, controls address. In SPI mode becomes MOSI input from host. | | J15 | SLVSCL / nSS | ODwpu
(may
change
to lwpu
during
startup) | VDDI | Slave I ² C clock OR SPI nSS | Not applicable | Requires additional pull up if using I ² C mode. | | | VDDI | PWR | | I/O supply | Not applicable | | | J16 | A34 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | K1 | | | | | | | | K1
K2 | A35 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | K1
K2
K3 | A35
A36 | AIO
AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as C48. | | K1
K2 | A35 | AIO | | | | Can be aliased to act as C48,
Can be aliased to act as D48,
Can be aliased to act as E48. | | Ball
Number | Name | Class | Domain | Function | If not required | Notes | |----------------|--------------|--|--------|---|---|---| | K6 | A39 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as C49. | | K7 | E32 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | can be allased to det as e47. | | K8 | E33 | AIO | VDDA | | Connect to SHIELD2DCTS | | | | | | | Sense pin | | | | К9 | D35 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | K10 | GND | PWR | | Supply and signal reference | Not applicable | | | K11 | GND | PWR | | Supply and signal reference | Not applicable | | | K13 | GND | PWR | | Supply and signal
reference | Not applicable | | | K14 | GND | PWR | | Supply and signal reference | Not applicable | | | K15 | SLVnIRQ | OD | VDDI | Slave report ready | Leave no connect | Requires additional pull up if used. | | K16 | SLVSDA / SCK | ODwpu
(may
change
to Iwpu
during
startup) | VDDI | interrupt
Slave I ² C data OR SPI SCK | Not applicable | Requires additional pull up if using I ² C mode. | | L1 | A40 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as D49. | | L2 | A41 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as E49. | | L3 | A42 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as C50. | | L4 | A43 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as Coo. | | L4
L5 | | AIO | VDDA | | Connect to SHIELD2DCTS | | | L6 | A44
GND | PWR | VUUA | Sense pin Supply and signal | Not applicable | Can be aliased to act as E50. | | L7 | E31 | AIO | VDDA | reference
Sense pin | Connect to SHIELD2DCTS | | | L8 | C32 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | L9 | C35 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | L10 | E37 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | | | | | | | | | L11 | D39 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | L12 | E47 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | L13 | D47 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | L14 | GND | PWR
| | Supply and signal reference | Not applicable | | | L15 | SHIELD2DCTS | AO | VDDA | 2DCTS shield pin | Not applicable | Shield driver for 2DCTS sense pins. | | L16 | VDDI | PWR | | I/O supply | Not applicable | | | M1 | VDDA | PWR | | Analogue supply | Not applicable | | | M2 | A45 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as C51. | | M3 | A46 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as D51. | | M4 | A47 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as E51. | | M5 | GND | PWR | VDDA | Supply and signal | Not applicable | Can be allased to act as EST. | | M6 | E29 | AIO | VDDA | reference
Sense pin | Connect to SHIELD2DCTS | | | M7 | D29 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | M8 | D31 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | M9 | D34 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | M10 | D37 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | M11 | C39 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | M12 | C41 | AIO | VDDA | | | | | | | | L | Sense pin | Connect to SHIELD2DCTS | | | M13 | C47 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | M14 | E46 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | M15 | D46 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | M16 | VDDA | PWR | | Analogue supply | Not applicable | | | N1 | A48 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as C52. | | N2 | A49 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as D52. | | N3 | A50 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as E52. | | N4 | E27 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | N5 | E28 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | N6 | C27 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | N7 | C29 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | N8 | C31 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | N9 | C34 | AIO | VDDA | | Connect to SHIELD2DCTS | | | | C34
C37 | | | Sense pin | | | | N10 | | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | NII | E38 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | N12 | E40 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | N13 | D42 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | N14 | C46 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | N15 | E45 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | N16 | D45 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | P1 | A51 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as C53. | | P2 | A52 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | Can be aliased to act as D53. | | P3 | E25 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | P4 | E26 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | P5 | D25 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | P6 | D26 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | P7 | D28 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | P8 | E30 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | P6
P9 | D33 | | | | | | | I | | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | P10 | E36 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | P11 | D38 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | P12 | D40 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | | C42 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | P13 | | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | P13
P14 | D43 | AIC | | | | | | | D43
C45 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | P14 | | | | | Connect to SHIELD2DCTS Connect to SHIELD2DCTS | | Doc: TNxD00376 Pg: 14 of 69 Rev: C6 | Ball
Number | Name | Class | Domain | Function | If not required | Notes | |----------------|-------------|-------|--------|------------------|------------------------|-------------------------------------| | R2 | SHIELD2DCTS | AO | VDDA | 2DCTS shield pin | Not applicable | Shield driver for 2DCTS sense pins. | | R3 | E24 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | R4 | C24 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | R5 | C25 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | R6 | C26 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | R7 | C28 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | R8 | D30 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | R9 | C33 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | R10 | D36 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | RII | C38 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | R12 | C40 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | R13 | E41 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | R14 | C43 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | R15 | C44 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | R16 | D44 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | TI | VDDA | PWR | | Analogue supply | Not applicable | | | T2 | E23 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | T3 | C23 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | T4 | D23 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | T5 | D24 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | T6 | VDDA | PWR | | Analogue supply | Not applicable | | | T7 | D27 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | T8 | C30 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | T9 | D32 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | T10 | C36 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | TII | VDDA | PWR | | Analogue supply | Not applicable | | | T12 | E39 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | T13 | D41 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | T14 | E42 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | T15 | E43 | AIO | VDDA | Sense pin | Connect to SHIELD2DCTS | | | T16 | VDDA | PWR | | Analogue supply | Not applicable | | Table 3.3.1-1: LFBGA256 Pin Table | Class | Description | |-------|--| | PWR | Power pin | | Al | Analogue input | | AO | Analogue output | | AIO | Analogue IO | | I | CMOS input (no pull up) | | lwpu | CMOS input with weak pull up ⁴ | | 0 | CMOS push-pull output | | ODwpu | CMOS Open drain with weak pull up ⁴ | | OD | CMOS Open drain no pull up | | Ю | CMOS input/output | | lOwpu | CMOS input/output with weak pull up ⁴ | Table 3.3.1-2: Pin Classes As a general convention, communication pin names are prefixed with "SLV" or "MST" to designate Slave or Master. Pin names with an "n" at the start of the function name designate an active-low signal e.g. MSTnIRQ is an active low interrupt from the Master. Also note that dual-mode pins are named (A) / (B), where (A) is the applicable name in the first mode and (B) in the second mode. Doc: TNxD00376 Pg: 15 of 69 Rev: C6 ⁴Pull up/down intended as level keeper only. # 4 Pin Descriptions #### 4.1 A0..53, C0..47, D0..47, E0..47 These are the sense pins, connected to the 2D CTS electrodes. The exact pin to electrode mapping is defined using the TouchHub configuration tool. The routing and layout of the connections to these pins is very important for best performance and is described in a separate application note. See **Appendix B References**.. Note that A36 through A53 can be configured to act as C48 D48 E48 through to C53 D53 E53 in support of ultra-wide aspect ratio sensor designs. #### 4.2 SHIELD2DCTS The 2D CTS sense pins must be routed using a shielding technique using a dummy electrode that is driven by this pin. This is described in a separate application note. See **Appendix B References**. SHIELD2DCTS must be bypassed to GND near to the device, with a single 1nF 6V ceramic X5R (or tighter tolerance) capacitor. #### 4.3 **GND** The OV power supply connection. Connect all GND pins to OV. #### 4.4 VDDA The analogue sub-system's power supply connection, running at nominally 3.3V. Connect all VDDA pins to 3.3V. The VDDA supply must be low noise and well regulated. Each VDDA pin must have a parallel 22uF and 100nF ceramic capacitor within 2mm, bypassing to GND with a short low inductance PCB trace. An additional single bulk ceramic, tantalum or electrolytic capacitor of \geq 22uF is required on the VDDA supply. Under most conditions its is acceptable to share this supply with VDDI⁵. These pins have special layout considerations. See **Appendix A.1.3 Layout and Routing Considerations** for VDDA tracks for further details. #### 4.5 VDDC The core sub-system's power supply output, driven by an internal LDO running at nominally 1.8V. If there is more than one VDDC pin then connect them all together to form a single net. Each VDDC pin must have a parallel 22uF and 100nF ceramic capacitor within 2mm, bypassing to GND with a short low inductance PCB trace. No other connections to the VDDC net are permitted. These pins have special layout considerations. See **Appendix A.1.3 Layout and Routing Considerations** for VDDA tracks for further details. #### **4.6 VDDI** The I/O sub-system's power supply connection, running at nominally 1.8V to 3.3V. Connect all VDDI pins to this supply. The VDDI supply is used to define the interface logic level used to communicate with the host, so must be sufficiently well regulated to ensure reliable high speed comms. Each VDDI pin must have a 100nF ceramic capacitor within 2mm, bypassing to GND with a short low inductance PCB trace. If the VDDA and VDDI supplies are separate, an additional single bulk ceramic, tantalum or electrolytic capacitor of \geq 1uF is required on the VDDI supply. Under most conditions it is OK to share this supply with VDDA, in which case route VDDI as a separate net and use a star point connection to VDDA to help to isolate noise on the two domains⁵. CMOS I/O pins should never exceed the limitations stated in Table 10.1-1 (Vpc and Vpa) during power up, operation or
power down. These pins have special layout considerations. See **Appendix A.1.3 Layout and Routing Considerations** for VDDA tracks for further details. Doc: TNxD00376 Pg: 16 of 69 Rev: C6 ⁵Assuming the I/O level is 3.3V. #### 4.7 SLVnIRQ The device generates an interrupt whenever it has a report waiting to be read by the host. The slave interrupt pin asserts low in this case. It returns to a Hi-Z state when no reports are pending (but is weakly pulled up). The action of the host reading a report is to consume that report, and when all reports have been consumed the pin returns to Hi-Z (wpu). In order to affect an acceptably fast low-to-high transition in the presence of parasitic capacitance, an external pull up of 1K to 10K is required. The host device should use *level* triggering to sense the interrupt. ### 4.8 SLVSDA / SCK This pin serves different functions depending on the communication mode selected by the nSLVI2C pin: **Slave I²C Mode**: The pin serves as the I²C Data pin to connect to the host. It has a weak internal pull up which must be supplemented with a 1K to 10K pull up to achieve correct rise and fall times depending on capacitive loading. **Slave SPI Mode:** This pin becomes the SPI SCK clock input from the host. In this mode no additional pull-up resistor is required. #### 4.9 SLVSCL / nSS This pin serves different functions depending on the communication mode selected by the nSLVI2C pin: **Slave I^2C Mode**: This pin is the I^2C Clock pin to connect to the host. It has a weak internal pull up which must be supplemented with a 1K to 10K pull up to achieve correct rise and fall times depending on capacitive loading. **Slave SPI Mode:** This pin becomes the SPI active low Slave Select input from the host. In this mode no additional pull-up resistor is required. #### 4.10 SLVI2CADDRSEL / MOSI This pin serves different functions depending on the communication mode selected by the nSLVI2C pin: **Slave I²C Mode**: Selects between 2 addresses for the device. See **7.3.1 Slave Address Selection** for details. The pin includes a weak pull up. It is strongly recommended to terminate this pin directly to GND or VDDI (as required) to completely override this pull up (but only when in Slave I²C mode!). **Slave SPI Mode**: The pin becomes the MOSI input from the host. ### 4.11 nSLVI2C / MISO This pin serves different functions depending on its state as sampled at power-on or reset: **Sampled low at reset:** Selects Slave I^2C communications mode. The pin includes a weak pull up. It is strongly recommended to terminate this pin directly to GND to select Slave I^2C mode. **Sampled high at reset**: Selects Slave SPI communications mode. The pin includes a weak pull up. It is strongly recommended to use a supplemental pull-up of 1K to 10K to select SPI mode; the pin must not be terminated directly to VDDI! On switching to SPI mode, the pin is changed to an output driver and is used as the MISO output to the host. #### 4.12 MSTCOMMS0 The device has a Master Communications port which can be controlled by a renderer in one of 3 modes: as a GPIO parallel output, as a master I²C interface or as a master SPI interface. **GPIO mode**: this is the first output driver OUTA. I^2C mode: this is the Master I^2C Data pin MSTSDA. It has a weak internal pull up which must be supplemented with a 1K to 10K pull up to achieve correct rise and fall times depending on capacitive loading. **SPI mode**: this is the MOSI output data pin MSTMOSI to the slave. Doc: TNxD00376 Pg: 17 of 69 Rev: C6 #### 4.13 MSTCOMMS1 The device has a Master Communications port which can be controlled by a renderer in one of 3 modes: as a GPIO parallel output, as a master I^2C interface or as a master SPI interface. **GPIO mode**: this is the second output driver OUTB. I^2C mode: this is the Master I^2C Clock pin MSTSCL. It has a weak internal pull up which must be supplemented with a 1K to 10K pull up to achieve correct rise and fall times depending on capacitive loading. **SPI mode**: this is the SCK clock output pin MSTSCK to the slave. #### 4.14 MSTCOMMS2 The device has a Master Communications port which can be controlled by a renderer in one of 3 modes: as a GPIO parallel output, as a master I^2C interface or as a master SPI interface. **GPIO mode**: this is the third output driver OUTC. I^2C mode: this is the active low interrupt pin MSTnIRQ. It has a weak internal pull up which may need to be supplemented depending on the nature of the driver connected to it. If the interrupt is shared between 2 or more devices, then each must be capable of indicating via I^2C commands whether it is actively asserting its interrupt or not. SPI mode: this is the MISO input data pin MSTMISO from the slave. #### 4.15 MSTCOMMS3 The device has a Master Communications port which can be controlled by a renderer in one of 3 modes: as a GPIO parallel output, as a master I²C interface or as a master SPI interface. **GPIO mode**: this is the forth output driver OUTD. I²C mode: not used **SPI mode**: this is the nSS active low slave select output pin MSTnSS to the slave. #### 4.16 GPIO0..4 General purpose I/O pins that can be configured and used by the host as required. Each one has an internal weak pull up included. Note the optional use of GPIO1 as an HSYNC input and GPIO2 as a VSYNC/EXTSYNC input (these optional selections are made via the device's configuration registers). #### 4.17 GND Do not connect. This pin has an internal connection to the device and must not be connected externally. #### 4.18 nRESET This pin is the asynchronus master hardware reset. Asserted low it returns the device to its reset state. When high, the device operates as normal. The pin has a weak internal pull up which must be supplemented with a 1K to 5K pull up and optionally a 10nF ceramic bypass capacitor to GND⁶ (to offer the best fast-transient immunity in harsh EMI applications). #### 4.19 AUX0..3 The auxiliary channels are used for pressSense. A single channel press system uses AUXO only. A multi-channel press system uses all four channels. The routing and layout of the connections to these pins is critical and is described in a separate application note. See **Appendix B References**. There is also the need for a reference capacitor for each used channel, connected between AUXn and SHIELDAUX. #### 4.20 SHIELDAUX The auxiliary sense pins must be routed using a shielding technique using a dummy electrode that is driven by this pin. This is described in a separate application note. See **Appendix B References**. Doc: TNxD00376 Pg: 18 of 69 Rev: C6 ⁶Check the ability of the connected reset driver to support this capacitive load. # 5 Reference Schematic Figure 5-1: Reference Schematic (LQFP256) aXiom AX198A-3D Datasheet <u>TouchNetix</u> Figure 5-2: Reference Schematic (LFBGA256) # 6 Sensing ### 6.1 Sensing Overview The aXiom sensing architecture has been designed to measure capacitance, with a Signal-To-Noise ratio that goes far beyond existing solutions, whilst also being sympathetic to the diverse range of EMC and EMI challenges that are faced in real-world applications. Using a high purity narrow band drive waveform, with an amplitude of just 1.25V⁷, the controller not only has extremely low Radiated Emissions, but is also sympathetic to the long term sensor aging problem, that is seen when operating at elevated temperature and humidity. This little-documented aspect of touch sensors, can only be addressed by using low amplitude DC-neutral drive techniques, to radically slow-down the effects of electro-corrosion, electro-migration and e-field induced damage to various metals and some polymeric materials. To pass stringent EMC tests, in particular those dealing with injected currents (Conducted Immunity), many competing controllers resort to high sensor drive amplitudes to improve their overall SNR. While this may be successful in one regard, it seriously compromises both sensor lifetime and Radiated Emissions. Coupled with drive waveforms that are often square in nature (leading to complex harmonic content), it can be seen that a pure low amplitude drive signal is a major advantage in tough environments. To measure capacitance using small signals in the presence of large amounts external noise, requires that the sensing architecture and the analogue front end of the device, is carefully optimized to be able to recover the carrier, even when this is hundreds of times smaller than the interference; techniques that are well understood in modern radio systems but that are seldom used in touch sensing. The device can be connected to a broad range of Capacitive Touch Sensor (CTS) styles, including both single and double connected versions of the well known *Diamond*, *Flooded* and *True Single Layer* types. To further extend the range of applications that are possible, the device treats its sensor pins as general resources and is able to use any pin as either drive or sense. This allows great flexibility in the aspect ratio of the CTS sensing area; the pool of sensor pins can be mapped to sensor electrodes in any ratio that is needed. This allows everything from long-thin touch areas to square touch areas to be created easily. The sensing architecture has more than enough dynamic range to handle the sensor measurement, in the presence of the diverse parasitics created by such extreme aspect ratios. This capability further extends to allowing direct support for truncated electrodes, often found in non-rectangular touch applications⁸. The high SNR of the acquisition engine, allows a wide range of glove types and thicknesses to be used with the CTS. Alternatively, high quality multi-touch tracking through very thick plastic cover panels becomes possible; over 10mm of acrylic overlay can be used and can even have varying thickness, thanks to a novel compensation scheme that helps to unify the touch sensitivity across diverse thickness changes. Sensing through small air gaps
also becomes viable⁹. Water suppression is built into the device's capability, allowing wet finger tracking and water rejection ¹⁰. Doc: TNxD00376 Pg: 21 of 69 Rev: C6 ⁷2.5V pk-pk ⁸Imagine a circular sensor; the outer electrodes have almost no surface area compared to those in the middle. ⁹Subject to mechanical stability considerations. ¹⁰Including saline solutions, blood etc with some sensing compromises. The acquisition engine makes its measurements during a period called a Frame. Each frame is sub-divided into smaller time units called *Slots*. During a Frame, different measurement tasks (Slots) are scheduled. Typically, a Frame consists mainly of CTS and/or CDS Slots, simply because there are so many measurements to take. There are also typically, a small number of Slots used for housekeeping. To simplify things, TouchHub2 can automatically configure the Frame based on the system's requirements. Figure 6.1-1: Acquisition Engine Frame Structure Doc: TNxD00376 Pg: 22 of 69 Rev: C6 The overall architecture of the AX198A-3D is shown below in simplified form. Figure 6.1-2: Simplified System Architecture Figure 6.1-3: Simplified Sensing Architecture Doc: TNxD00376 Pg: 23 of 69 Rev: C6 # 6.2 Touch Sensing #### 6.2.1 2D (xy) Sensing The AX198A-3D uses a *transverse capacitive* measurement technique ("trans-cap") to sense the capacitive coupling between pairs of electrodes. Traditionally, these would be called *transmitter* and *receiver* (or *drive* and *sense*) electrodes. The AX198A-3D sensing architecture is more flexible than existing devices, which makes it misleading to think of electrodes as having fixed transmit and receive functions. Rather, any electrode can be either function. Hence, we'll refer to them as either just electrodes or *sense pins* or even sometimes *channels*; the names are freely interchangeable. The AX198A-3D has 198 sense pins. These can be wired to the electrodes of a 2D Capacitive Touch Sensor (2D CTS) in a very flexible way, enabling the creation of sensing areas with arbitrary aspect ratios. To simplify the design task, the supplied TouchHub2 software can take high-level design requirements, such as the number of electrodes in each axis of the CTS, and automatically decide which device pins to connect to which electrodes. For this reason, when you look in the Pin Description tables you will not see familiar names like "TXO" or "RX10". Instead, you will see pins with more generic names like "A0" and "D3". This way we reduce the risk of inferring the function of these pins. Likewise, we refer to the two axes as Rows and Columns rather than Tx and Rx. The 2D CTS is typically formed of a grid of orthogonal electrodes. Where a Row and Column electrode intersect, a sensing node is formed. The capacitance of all nodes in the CTS are measured by the device once every *frame*¹¹. When a user touches the CTS, the node capacitances change near to the touch position and cause what is referred to as a *touch delta*. It is this touch delta that the device senses and converts into accurate touch positions. Figure 6.2.1-1: Channel Naming Convention Doc: TNxD00376 Pg: 24 of 69 Rev: C6 ¹¹The measurement is conducted by the acquisition engine, which is instructed what to do by a configuration *profile* created by TouchHub2. The AX198A-3D can measure up to 6144 nodes; this means that configurations where (RXs \times TXs \le 6144) are supported. Some large, almost-square, designs may need to limit the number of RX and TX to stay within this limit. While any pin can be configured as either TX or RX, there are multiple factors which affect performance including how electrodes are assigned to pins. Therefore, it is necessary to use the TouchHub2 tool to determine the optimal connections to use for your sensor. The AX198A-3D can report up to 10 concurrent touches, using advanced signal processing techniques to accurately resolve touch positions at up to 16 bits of resolution. To enhance the rate at which the host can read the status and position of these touches, all 10 touches are combined into a single compact report, reducing communication traffic and reducing the chance of the host missing important touch events. Figure 6.2.1-2: Traditional vs. aXiom Channel Allocation Doc: TNxD00376 Pg: 26 of 69 Rev: C6 #### 6.2.2 1D (slider) and 0D (button) Sensing As described above, the AX198A-3D has 198 channels. In many applications, some or all of these will be allocated to a 2D (xy) sensing grid of electrodes to resolve touch position above a display. However, the AX198A-3D has the ability to allocate arbitrary (albeit concurrent) ranges of channels, to be processed independently as though they were separate touch regions. A region can use any number of channels, from all available channels, which would of course result in a 2D region, right down to just one pair of channels forming a 0D button. Up to 16 regions can be defined. Touch processing within regions works exactly like they are each a sub 2D touch area. This means that even a 0D button reports a touch event using the same reporting mechanism as a 2D region, sending its touch status and an xy position to the host. For a 0D region (1 x 1 channels), the xy position is fixed to report exactly mid-range (the host can hence ignore these coordinates). For a 1D region (1 x n channels), the xy position is fixed to mid-range in one axis and reports the touch position along the long axis. Figure 6.2.2-1: Region Types Doc: TNxD00376 Pg: 27 of 69 Rev: C6 $^{^{\}rm 12}\text{The}$ smallest arrangement to allow for a trans-cap measurement of a single node. # aXiom AX198A-3D Datasheet The channels of the AX198A-3D are all measured using the same settings as part of the overall measurement frame. The allocation of the channels into regions is a post-measurement activity and as such, means that the electrical characteristics and environments of the physical sensing regions must be similar. For example, defining a 2D region of electrodes over a display, so adding significant load capacitance, will possibly require us to lower the measurement gain. This will also cause the same gain to be used for the channels allocated to a 0D button, hence the physical sensitivity of that button needs to be compatible with that gain. Note that the AX198A-3D has the ability to individually scale every node independently and that can help in such situations; see **6.3 Variable Thickness Lenses** for more information. Region 0 is special, in that it can process 3D sensing events such as proximity and hover and is intended to be used with a 2D sensor (but it is not required to). All regions are identical in all other respects. Region reporting is done in the lower 2 bits of each of the 16-bit X and Y coordinates per-touch. This yields a combined 4-bit number i.e. 16 regions in total, with the touch coordinate using the remaining upper 14-bits of X and Y. If regions are not used the host can, if it chooses, simply process the coordinates as full 16-bit unsigned numbers and just ignore the fact that the lower 2-bits of each coordinate, are actually region identifier bits¹³. On the other hand, if regions are used, the host can still process the coordinates as 16-bit, but it can also isolate the combined 4-bit region identifier from X and Y, to tell which region a particular touch is in. This way the region reporting is conveniently embedded in with the normal report data. Regions are also integrated with Haptic triggering, allowing different effects to be configured based on which region a touch is interacting with. Doc: TNxD00376 Pg: 28 of 69 Rev: C6 ¹³The lower 2-bits are insignificantly small in a touch system and can be safely ignored anyway. #### 6.3 Variable Thickness Lenses The AX198A-3D's acquisition engine includes a facility to scale the measured 2D touch delta array on a node-by-node basis. The scaling factors for each node can be changed using TouchHub2 via a configuration file. For most touch controllers, scaling the measured deltas in this way would simply amplify the background noise, to a point where it would cause excessive touch position jitter and even false detections. However, because the SNR of the AX198A-3D is so much higher, this amplification becomes viable, allowing corrections to the apparent gain of each and every node on the 2DCTS. This delta scaling, opens up interesting new possibilities to support cover lenses with widely varying thickness across their surface. The scaling allows both attenuation and amplification, giving an adjustment range of x16 between areas requiring the lowest and highest gains. Additionally, any node can be completely suppressed, allowing regions of the sensor to be disabled. The rear side of the lens can remain flat, or perhaps curved in just 1 direction, making production lamination far easier than some schemes, that try to in-mold laminate the touch sensor into complex uniform thickness lenses. Figure 6.3-1: Example of a Flat Sensor and Variable Thickness Lens Doc: TNxD00376 Pg: 29 of 69 Rev: C6 # aXiom AX198A-3D Datasheet ## 6.4 Dial On Display The AX198A-3D supports up to four Dial On Display mechanical rotors. This is achieved by using the exisiting 2DCTS touch electrodes. The AX198A-3D can be configured to detect when the dial is actively being touched. To provide user feedback, the AX198A-3D can trigger haptic effects both when the dial is pressed and during its rotation. It employs the same reporting mechanism as regular touches, simplifying host support and integration. For further details see TNxAN00079 aXiom Dial on Display. ### 6.5 Force Sensing The AX198A-3D includes 4 AUX abs-cap channels, suitable for measuring the Capacitive Displacement Sensor (CDS) used in force sensing systems. This style of sensor offers very high mechanical dynamic range, making it suitable for use in systems where alignment and stack tolerance would saturate other types of sensor. In order to harness this wide operating range, yet still measure
the CDS with sufficient resolution¹⁴, the AX198A-3D uses up to 4 dedicated channels that are able to reduce the measurement burden caused by the large baseline capacitance of the CDS. Combined with the high SNR of the acquisition engine, force sensing systems can be designed that are virtually immune to wide manufacturing tolerances, yet can resolve displacements of microns. Many force sensing systems require only a single channel to detect the overall displacement of a cover lens, relative to the system's chassis. This is a so-called *single-force* system and is suitable for most applications; each touch contact is assigned the same force and hence, is suitable for User Interfaces where the predominant mode of operation *is single touch with force qualification*; multiple touch gestures are still supported but do not need any force element to function. On the other hand, using 4 channels allows the creation of a force sensing system that can approximate the force independently on 2 touches; a *multi-force* system. Mechanically, the setup is identical to a single-force system but the CDS is split into 4 quadrants, and each part is measured by one of the 4 AUX channels. When operating in this mode, the AX198A-3D can report an approximate force coordinate i.e. the XY location where the Centre of Mass (CoM) is calculated to be ¹⁵. Figure 6.5-1: Single-Force System Implementation, Non-segmented CDS Doc: TNxD00376 Pg: 31 of 69 Rev: C6 ¹⁴Resolve displacements of just a few micro-meters. ¹⁵Channel matching becomes more critical in this case and requires more attention to tolerances and offsets. Figure 6.5-2: Multi-Force System with Four Force Channels, Quadrant-segmented CDS The acquisition engine can be programmed to measure the CDS continuously, at the same time as it is performing its trans-cap measurements on the 2DCTS. Hence the measurement frame rate is identical to that of the touch system and time correlation of the 2 types of measurement is guaranteed by design. The aXiom force sensing system uses a patented CDS that has a very wide mechanical operating range and hence can absorb large assembly tolerance variation between production units, whilst maintaining excellent force sensitivity. To ease production testing of systems equipped with force sensing, AUX 3 can have an accurate reference capacitor connected between it and GND; this is instead of a normal AUX sense channel. This allows precise and absolute measurement of the CDS's capacitance at run-time. This facility can be used as part of a design-time characterization of the mechanical displacement vs. the CDS's capacitance. Using this reference table, the AX198A-3D can be used to estimate the mechanical gap of any assembled unit, to allow a production time check that it is within tolerance. It is important to stress that having such a wide operating window, coupled with the ability to check any unit's assembly tolerance, means that there is no need to individually reference each unit during production. For further information on force sensing applications, see TNxAN00085 aXiom Force Sensing. ## 6.6 Pre-contact Sensing (3D Prox and Hover) In order to sense a target before it makes physical contact with a capacitive touch sensor, it requires the ability to sense extremely small changes in capacitance. A *normal* contact target (a touch) will typically cause a change in trans-capacitance of 10's to 100's of Femto Farads (1fF = 10^{-15} F). A *pre-contact* target, on the other hand, will cause a change in capacitance that is closer to 100's of Atto Farads ($1aF=10^{-18}$ F). Clearly, high measurement SNR is key to being able to detect such targets. Competing pre-contact solutions use extra sensing electrodes positioned around the outside edge of the 2DCTS. While this allows good detection range while hovering over, or close to the electrodes, the zone in the middle of the 2DCTS is far enough away to suffer a large drop in signal, making the centre zone less sensitive ¹⁶. The 2DCTS itself also acts as a heavy load on the extra electrodes, causing substantial parasitic capacitance on them, making the measurement system work even harder to detect small changes. In contrast, the AX198A-3D can sense and report an approximate XY position for a pre-contact target without the use of additional electrodes. It can do this because it can achieve a hardware measurement SNR of over 80dB, or 1 part in 10000. When combined with firmware DSP techniques, it can sense a pre-contact target **above the 2DCTS** at a distance of over 100mm ("Prox") and start to resolve its XY position at over 50mm ("Hover"). This is achieved without needing extra sense electrodes, and hence no extra edge margin is consumed around the outside edge of the touch panel. Figure 6.6-1: Sensing a Target Before Contact With The CTS To further simplify the use of this feature, pre-contact targets are reported in exactly the same way as contact targets, but they have a flag to identify them as pre-contact target with a confidence factor, to give an indication of how far away (or weak) the pre-contact target is. This allows the host to qualify the use of the XY coordinates and take appropriate action based on the certainty of the report. Once a target makes contact with the 2DCTS, the AX198A-3D automatically reverts to a conventional touch mode, tags each detected target as a contact type and replaces the confidence factor with the force value detected from the CDS (if used) ¹⁷. Doc: TNxD00376 Pg: 33 of 69 Rev: C6 ¹⁶Exactly the zone that requires the greatest sensitivity. ¹⁷The system can detect and report a single pre-contact target, or multiple contact targets but not both at the same time. #### 6.7 EMC Features One of the toughest challenges faced by capacitive touch sensors, is that of achieving high electrical noise immunity to conducted interference. The reason is simple: in most typical electronic systems we only need to worry about noise on the power supplies relative to our own GND (0V), which is local to the system. Excess noise can always be filtered out. In a capacitive touch system, part of the sensing current travels via a capacitively coupled route, through the touching finger and back to the controller via a 3rd terminal; earth. So noise that is common to power and GND relative to earth, will appear in the capacitive measurement when, and only when, a touch is applied. In some compliance tests, this immunity aspect is checked by injecting a common mode signal and sweeping it from 150KHz to 80MHz, 80% amplitude modulated. This causes a voltage disturbance of nearly 50V peak-to-peak with respect to earth 18! Noise of this type is encountered in many industrial, medical and automotive environments, caused by switch mode power supplies, inductive coupling between equipment cables etc. Clearly, because the noise is "earth referred" there is no obvious conventional way to filter it. Figure 6.7-1: Example Common Mode Noise From "Other" Equipment The nature ¹⁹ of a typical touch sensor is that capacitance measurements at a frequency between 50 and 500KHz tend to be optimal. Clearly this frequency range overlaps the test band mentioned above; injecting noise at or near the measurement frequency will directly affect the measurement. In order to counter this, the AX198A-3D is frequency agile, being able to move its measurement frequency at will. This is known as frequency hopping and is a well understood method for avoiding interference in many aspects of electronics and radio communications²⁰. The AX198A-3D uses a very narrow bandwidth to measure capacitance. This has the great advantage that in a congested spectrum with narrow quiet gaps, it is still possible to re-locate the acquisition frequency to affect low noise measurements. Many competing touch devices use an integration technique, employing an integrator with a sampled input. This gives rise to an extremely wide and complex reception spectrum²¹, making it hard to hop away from interference. A second advantage that narrow band demodulation offers, is that it is possible to very accurately measure the amount of external noise present at any moment; the AX198A-3D does this continuously each frame and hence it can react instantly if noise suddenly appears in the system. Competing systems can sometimes be fooled into thinking that there is zero noise, when certain noise frequencies are injected, and hence their measurements fail when no preventative steps are taken to frequency hop. The AX198A-3D can never be fooled in this way. The AX198A-3D also sets new standards in its ability to maintain several internal operating points, allowing it to hop quickly and seamlessly between frequencies. Doc: TNxD00376 Pg: 34 of 69 Rev: C6 ¹⁸e.g. EN61000-4-6 Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields: Level 3. ¹⁹i.e. its -3dB frequency response. ²⁰Invented c. 1942 for guided torpedo anti-jamming. $^{^{21}}$ the sampling window imposes a $\frac{sin(x)}{x}$ frequency response characteristic which is full of slowly reducing lobes and few, very narrow gaps to hop to. # aXiom AX198A-3D Datasheet To further protect the AX198A-3D against EMI, the signal path in the analogue front end, uses techniques to avoid its amplifiers from over-ranging in the presence of very high levels of interference. Even when such counter measures are employed, the touch report stability is still industry leading, thanks to the high SNR of the acquisition engine. So far we have talked only about immunity to interference, but in some applications, emissions are just as big an issue. The AX198A-3D drives the sensor with a pure 1.25V amplitude sinusoidal waveform at a single frequency. Compare this to many competing devices that drive the sensor using a square wave at up to 30V peak-to-peak, leading to problems when trying to pass emissions certification. Doc: TNxD00376 Pg: 35 of 69 Rev: C6 ### 6.8 Water Suppression The
AX198A-3D employs a unique architecture that allows it to make two types of measurement during the same frame: i) trans-cap (as already discussed) and ii) a second measurement type called *absolute capacitance* or *abs-cap*. Abs-cap measures the total capacitance of an electrode, rather than the coupling capacitance to another electrode. When abs-cap measurements are taken, they are done concurrently on a whole group of electrodes. This means that multiple electrodes are driven with near identical waveforms and hence the coupling capacitance from neighbour to neighbour is virtually neutralized; only the total capacitance of each electrode to GND+earth is sensed. This has the useful side-effect that water puddles, laying on the CTS lens surface that bridge between/across electrodes, become almost invisible from a capacitance point of view. Trans-cap measurements, on the other hand, will see normal touches and water puddles as almost identical. By making two types of measurement, the AX198A-3D can discriminate between such contacts and hence can offer a great improvement in *waterproofing* the overall touch solution.²² Figure 6.8-1: Different Behaviors With Abs-cap and Trans-cap Measurements With Water and Touch Doc: TNxD00376 Pg: 36 of 69 Rev: C6 ²²These effects have been well known since the late 90's but implementation of dual measurement-mode controllers only became popular with the growth of mobile devices. Abs-cap measurements come with their own set of challenges, mainly caused by the fact that the change in capacitance with touch, is a much smaller proportion of the electrode's *baseline capacitance* than it is with trans-cap²³. This leads to a requirement for even greater measurement SNR. There are ways to mitigate some of the extra capacitive loading on the electrodes, particularly those that live at the edges of the CTS, that would normally be exposed large areas of GNDed conductor (e.g. other traces, ESD rings etc). See **Appendix B References** for links to application notes that cover this topic in more detail. During a frame, the AX198A-3D typically measures a 2DCTS in trans-cap mode across many sub-frame time slots (See **6.1 Sensing Overview**). Additionally, it will use multiple slots to measure the CTS in abs-cap mode. TouchHub2 software can create a configuration file that will schedule all of these measurements automatically. Doc: TNxD00376 Pg: 37 of 69 Rev: C6 ²³i.e. the touch delta percent is smaller because the baseline capacitiance is so much higher (perhaps 10 to 100 times that of a trans-cap node). # 6.9 Sensor Compatibility The wide measurement range of aXiom devices means they can operate with most sensor styles and constructions. For further details refer to **TNxAN00042 aXiom Touch Controller Sensor Compatibility**. #### 6.10 Sensor Protection Touch sensors are fabricated using a range of materials, some of which are extremely stable and some of which are not. Indium Tin Oxide (ITO), for example, commonly used to make the sensor's electrodes, is a ceramic conductor²⁴ that is remarkably robust to environmental damage caused by high temperature and humidity. It is very common to leave ITO exposed to the environment, even in harsh conditions²⁵. Other materials, notably the Silver commonly used to form the edge wiring on sensors, is a very different proposition when exposed to such conditions and when it is also supporting a voltage difference to a neighboring conductor. In these conditions, an effect known as Electro-Migration can occur over time, that forms small conductive "dendrites" between traces that eventually short circuit the touch sensor channels and cause premature failure. This is true for sensors that are fabricated on glass or plastic substrates. A common requirement in industrial and automotive environments, is to achieve a 504 hour operating life when exposed to 60°C and 90% relative humidity. This requirement sounds easy enough and indeed, many claim that their sensor / controller combination can pass this test. The reality is that the test is often conducted like a "storage" test with no power applied during the environmental exposure. This is not the same test! It is the application of power, and hence voltage, that causes the Electro-Migration. The rate of migration depends on many factors including the voltage differential between traces. For this reason the AX198A-3D takes two special precautions: - 1. It uses a very small drive amplitude of 1.25V (2.5V pk-pk) to measure the capacitance. Compare this to controllers that use 10 to 30V to drive the sensor. - 2. It also biases all inactive electrodes in such a way that, all active drive voltages swing symmetrically either side of this bias; this has the effect of further slowing migration as the net DC level is approximately zero²⁶. Compare this to controllers that bias inactive electrodes to GND and drive with a pulsed 30V waveform. Further discussion of these effects are beyond the scope of this document, but further information can be found in **Appendix B References**. Doc: TNxD00376 Pg: 38 of 69 Rev: C6 ²⁴It can also be classed as an alloy depending on its exact composition. ²⁵Noting that standing water or other contaminants can etch ITO if they are acidic in nature. ²⁶Refered to as a DC neutral drive. # 7 Host Interfaces #### 7.1 Available Interfaces The AX198A-3D offers two ways to communicate with the host; - A slave I²C interface consisting of the following pins (taking the name before the "/"): (SLVSDA / SCK), (SLVSCL / nSS) and an interrupt (SLVnIRQ). Rates up to 400KHz are supported. - A slave SPI interface consisting of the following pins (taking the name after the "/"): (\$LVI2CADDRSEL / MOSI), (nSLVI2C / MISO), (\$LVSDA / SCK), (\$LVSCL / nSS) and an interrupt (\$LVnIRQ). Rates up to 4MHz are supported. #### 7.2 Mode Selection A single pin controls which host interface is selected: **nSLVI2C** / **MISO**. The pin is sampled as the device starts up (from a power on, or reset event): If the pin is sampled low, **Slave I²C** mode is selected. If the pin is sampled high, **Slave SPI** mode is selected. The pin includes a weak pull-up that must be overridden either by tying it to GND (for I^2C mode) or by **pulling up** with a supplemental resistor to VDDI (for SPI mode)²⁷ (see **4.11 nSLV12C / MISO**). Figure 7.2-1: Communication Mode Selection Doc: TNxD00376 Pg: 39 of 69 Rev: C6 ²⁷In SPI mode the pin changes to become an output and hence must **not** be pulled up by tying directly to VDDI. # 7.3 Slave I²C Mode #### 7.3.1 Slave Address Selection Two different Slave I²C addresses can be selected with the **SLVI2CADDRSEL / MOSI** pin. The pin is sampled as the device starts up (from a power-on, or reset event): | SLVI2CADDRSEL / MOSI level | Slave I ² C Address (7-bit hex) | |----------------------------|--| | low | 0x66 | | high | 0x67 | Table 7.3.1-1: Slave I²C Address Selection See 4.10 SLVI2CADDRSEL / MOSI for notes on terminating this pin. #### 7.3.2 Connections Figure 7.3.2-1: Slave I²C Connections #### 7.3.3 I²C Protocol The communications protocol used to access configuration registers in the device and to receive event reports from the device, can be found in **TNxAN00035 aXiom Touch Controller Comms Protocol**. Real-time report collection from the device over the I^2C interface has been optimized to work in an interrupt driven mode rather than being polled. Doc: TNxD00376 Pg: 40 of 69 Rev: C6 ### 7.4 Slave SPI Mode #### 7.4.1 Device Selection In order to communicate with the device the **SLVSCL** / **nSS** pin must be asserted low for (at least) the duration of the communication. It is OK to permanently connect **SLVSCL** / **nSS** to GND when in SPI mode, if the AX198A-3D is the only device on the SPI bus. #### 7.4.2 Connections Figure 7.4.2-1: Slave SPI Connections #### 7.4.3 SPI Protocol The SPI interface operates in Mode 0^{28} . The communications protocol used to access configuration registers in the device and to receive event reports from the device, can be found in **TNxAN00035 aXiom Touch Controller Comms Protocol**. Real-time report collection from the device over the SPI interface has been optimized to work in an interrupt driven mode rather than being polled. Doc: TNxD00376 Pg: 41 of 69 Rev: C6 ²⁸Clock Polarity:0, Clock Phase:0, Clock Edge:1 (Clock idles at 0, and uses rising edge to sample data, and uses falling edge to shift data). # 8 Haptics In order to provide physical sensation feedback to a user who is touching and-or pressing on a surface, the AX198A-3D offers a mechanism to trigger a 3rd party Haptic driver device. To qualify when a Haptic effect should be played, the following events can be used to generate the overall trigger: - Touch position. - Touch movement. - Applied force (rising). - Applied force (falling). Figure 8-1: Master I²C Connections to 3rd Party Device(s) The qualification by touch position is controlled using an array of configurable hot-spots over the 2D surface. Each hot-spot can be switched on and off efficiently, allowing the host to change UI screens (and selected hot-spots) smoothly. Hot-spot definition is sufficiently fine-grained to allow rectangular closed-form regions to be defined. Each hot-spot can be triggered based on a number of criteria and can also trigger a specific effect using the Master Comms interface. Additionally, hot-spots can be tagged in groups to allow their XY positions to be globally offset, allowing grouped hot-spots to be scrolled in synchronism with a UI. aXiom can use the Master Comms port in one of 3 modes to trigger the playback of an effect: - 1. In Master GPIO mode; driving a set of 4 output pins to control an actuator. (normally via a power amplifier such as a motor driver). - 2. In Master I²C mode²⁹; using the Master I²C interface to send commands to trigger a 3rd party actuator device. - 3. In Master SPI mode³⁰; using the Master SPI interface to send commands to
trigger a 3rd party actuator device. The first method is limited in that it only allows simple effects to be triggered. The second and third methods are much more flexible, as they can transmit a sequence of commands to a device that both define and trigger the effect. A typical example of such a 3rd party actuator device is the Texas InstrumentsTM DRV2605. This can be connected to the Master Comms port I²C interface of the AX198A-3D and a series of I²C macro commands can be defined in the device configuration, to achieve various effects. As part of the I²C sequence, dynamic data can be sent to the device from the AX198A-3D such as X, Y, touch number, force value, effect etc. For further details see TNxAN00036 aXiom Touch Controller Haptics Drive. Doc: TNxD00376 Pg: 42 of 69 Rev: C6 ²⁹Noting that this is not related in any way to the **Host** Interface I²C Mode. $^{^{30}\}mbox{Noting}$ that this is not related in any way to the **Host** Interface SPI Mode. # 9 Programming Model aXiom devices use a register interface called *Touch Controller Protocol*, or TCP, which defines each and every register in the device, how they are organized and accessed. TCP covers configuration and tuning registers, as well as general status and information registers. For the transport of "live" data, TCP also describes a reporting scheme; this is particularly important for host device drivers, because it is the mechanism by which the device sends real-time touch information to the host. While all aXiom devices use TCP, the exact set of registers and features offered by a specific device do vary. Hence, this general document does not present a detailed programming interface. Instead, you are directed to TNxAN00060 aXiom AX198A Touch Controller Programmer's Guide The runtime firmware in axiom devices is field upgradable using a command and register interface called "Bootloader Protocol" or BLP, details of which can be found in **TNxAN00043 axiom Touch Controller Bootloader**. Doc: TNxD00376 Pg: 43 of 69 Rev: C6 # 10 Device Characteristics All quoted ranges are at an operating ambient temperature of 25°C unless otherwise stated. # 10.1 Absolute Maximum Ratings Stresses beyond those listed in Table 10.1-1 may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in 10.2 Operational Ratings is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. | Symbol | Parameter | Min | Max | Units | |--------------------|---|--------|----------|-------| | VDDA | Analogue supply | -0.3 | 4 | V | | VDDI | I/O supply | -0.3 | 4 | V | | V_{pc} | Voltage applied to any CMOS pin | -0.5 | VDDI+0.5 | V | | I _{pc} | Maximum source/sink current for any CMOS pin | -25 | 25 | mA | | V_{pa} | Voltage applied to any Analogue pin | -0.5 | VDDA+0.5 | V | | I _{pa} | Maximum source/sink current for any
Analogue pin | | | mA | | T _S | Storage temperature (non operating) | -65 | 150 | °C | | T_J | Junction temperature (operating) | 125 °C | | °C | | ESD _{hbm} | ESD rating, human body model ³¹ | | 2000 | V | | ESD _{cdm} | ESD rating, charged device model ³¹ | | 750 | V | Table 10.1-1: Absolute Maximum Ratings Doc: TNxD00376 Pg: 44 of 69 Rev: C6 ³¹Discharge direct to device pins. Discharge rating to the sensor/lens in a system is application specific but is typically far higher than this device rating. ## 10.2 Operational Ratings #### 10.2.1 Operating Conditions | Symbol | Parameter | Range | Units | |-----------------|--|-------------|-------| | T _A | Ambient temperature ³² | -40 to +105 | °C | | RH _A | Ambient relative humidity (non-condensing) | 10 to 90 | %RH | Table 10.2.1-1: Operating Conditions ### 10.2.2 Power Requirements | Symbol | Parameter | Range ³³ | Units | |-------------------|--|---------------------|-------| | VDDA | Analogue supply | 2.97 to 3.63 | V | | VDDI | I/O supply | 1.62 to 3.63 | V | | IDDA | Active analogue supply current (average over frame) | 200 - 250 | mA | | IDDI | I/O supply current (average over frame) | 0.005 to 5 | mA | | N _{VDDA} | Allowable peak-to-peak noise and ripple on analogue supply | 85 | mV | | N _{VDDI} | Allowable peak-to-peak noise and ripple on I/O supply | 200 | mV | Table 10.2.2-1: Power Requirements Note that IDDA varies depending on the device's configuration, which defines the measurement types and durations that are performed. For host power supply sizing and thermal calculations, the maximum stated value should be used as an average, with an allowance for +/-25% current variation away from the average during a measurement frame. The chosen regulator must be able cope with this transient current behaviour. Generally, a device configuration that employs only Trans Cap measurements will consume considerably less than one which also enables Abs Cap measurements that last for a significant percentage of the total frame time. Also note that IDDI varies significantly depending on the amount of IO activity but is generally far smaller than IDDA. As noted in **4 Pin Descriptions** VDDA and VDDI are commonly shared and so this current should be added to the overall supply current budget. #### 10.2.3 Power Sequencing There are no power sequencing requirements for the application or removal of (or between) VDDA and VDDI. Internal brown-out detection will prevent the device from operating, until both VDDA and VDDC (internal) are properly established. VDDI is not level checked as it does not directly impact the internal operation of the device³⁴. CMOS I/O pins should never exceed the limitations stated in Table 10.1-1 (Vpc and Vpa) during power up, operation or power down. #### 10.2.4 Startup Time From the rising edge of **nRESET** (or when **VDDA** rises above approx. 2V) to the falling edge of **nIRQ**³⁵: < **110ms** typical. At this point the device is fully operational. Doc: TNxD00376 Pg: 45 of 69 Rev: C6 ³²Subject to appropriate PCB design. ³³Treat these values as bounding limits. ³⁴...but clearly VDDI needs to be correctly established in order to communicate with the device. $^{^{35}}$ The first interrupt is created by a "hello" System Manager report to the host. # aXiom AX198A-3D Datasheet #### 10.2.5 Reduced Power Mode To conserve power during periods of low activity, the device can be configured to enter³⁶ a Reduced Power Mode (RPM). This trades off first detection latency (from RPM) against power consumption. Typical power reductions of 2 to 6x are possible, as the RPM measurement rate is reduced. For further details refer to **TNxAN00061 aXiom Touch Controller Reduced Power Mode**. Doc: TNxD00376 Pg: 46 of 69 Rev: C6 $^{^{36}}$ Either automatically or by command). # 10.2.6 CMOS I/O Characteristics | Symbol | Parameter | Range | Units | |------------------|--|--------------|-------| | V _{IL} | Logic low input @ 1.8V VDDI | -0.3 to 0.63 | V | | V_{IH} | Logic high input @ 1.8V VDDI | 1.2 to 3.6 | V | | V_{OL} | Logic low output @ 1.8V VDDI, 1.5mA sink | 0.5 max | V | | V _{OH} | Logic high output @ 1.8V VDDI, 1.5mA source | 1.4 min | V | | R _{WPU} | Weak pull up resistance @ 1.8V VDDI (where applicable) | 69 - 201 | ΚΩ | | I _{IL} | Input leakage current | ±1 max | uA | Table 10.2.6-1: CMOS I/O Characteristics (1.8V) | Symbol | Parameter | Range | Units | |------------------|--|-------------|-------| | V _{IL} | Logic low input @ 3.3V VDDI | -0.3 to 0.8 | V | | V _{IH} | Logic high input @ 3.3V VDDI | 2.0 to 3.6 | V | | V_{OL} | Logic low output @ 3.3V VDDI, 4mA sink | 0.5 max | V | | V _{OH} | Logic high output @ 3.3V VDDI, 4mA source | 2.4 min | V | | R _{WPU} | Weak pull up resistance @ 3.3V VDDI (where applicable) | 34 - 74 | ΚΩ | | I _{IL} | Input leakage current | ±1 max | uA | Table 10.2.6-2: CMOS I/O Characteristics (3.3V) Doc: TNxD00376 Pg: 47 of 69 Rev: C6 #### 10.2.7 Slave I²C Characteristics The AX198A-3D implements a Slave I^2C interface that is compliant with industry standards. It supports both Standard-mode (100KHz) and Fast-mode (400KHz). Addressing is 7-bit. Clock stretching support by the host is required. Bus timings are as per UM10204 I^2 C-bus specification and user manual Rev. 6 — 4 April 2014. The general form of an I^2 C transaction is shown below. Additional I/O and timing parameters can be found in the aforementioned document in Table 9 and Table 10. Figure 10.2.7-1: Typical I²C Transaction and Parameters | Symbol | Parameter | Min | Max | Units | |---------------------|--------------------------------------|------|-----|-------| | T _{hd;sta} | Start bit hold time | 600 | - | ns | | T _{high} | Clock high period | 600 | - | ns | | T _{low} | Clock low period | 1300 | - | ns | | T _{su;dat} | Data setup time | 100 | - | ns | | T _{hd;dat} | Data hold time | 0 | - | ns | | T _{cstr} | Maximum clock stretch by slave | - | 5 | us | | T _{su;sto} | Stop bit setup time | 600 | - | ns | | T _{bu} | Bus free time between stop and start | 1300 | - | ns | Table 10.2.7-1: Timings Doc: TNxD00376 Pg: 48 of 69 Rev: C6 #### 10.2.8 Slave SPI Characteristics The AX198A-3D implements a Slave SPI interface that is compliant with industry standards. It supports Mode 0 communication at up to 4MHz. The most significant bits of 8-bit data fields are exchanged first. Figure 10.2.8-1: Typical SPI Transaction and Parameters | Symbol | Parameter | Min | Max | Units | |-----------------------|--|-----|-----|-------| | T _{hiz;ss} | nSS transition to MISO transition to/from
HiZ | - | 20 | ns | | T _{dsu} | Data setup time (MOSI to SCK) | 20 | - | ns | | T _{dhd} | Data hold time (SCK to MISO) | 50 | - | ns |
 T _{sckhi} | SCK high period ³⁷ | 100 | - | ns | | T _{scklo} | SCK low period ³⁸ | 100 | - | ns | | T _{recovery} | Slave recovery time, ready for next transfer ³⁹ | - | 45 | us | Table 10.2.8-1: Timings Doc: TNxD00376 Pg: 49 of 69 Rev: C6 $^{^{37}}$ Subject to maximum SCK frequency of 4MHz. ³⁸Subject to maximum SCK frequency of 4MHz. ³⁹The host must ensure that it does not violate this recovery time by ensuring that transfers are spaced apart sufficiently to let the slave prepare for the next transfer. Violating this timing will result in undefined Slave behaviour, possibly lasting beyond the initial violated transfer. # aXiom AX198A-3D Datasheet # 10.2.9 Master I²C Characteristics The Master I^2C interface implemented in the AX198A-3D is intended for communication with one or more 3rd party slave devices. The characteristics of the interface are identical to those of the Slave I^2C interface. See **10.2.7 Slave I^2C Characteristics** for details. The Master I^2C interface supports clock stretching by a connected slave. ## 10.2.10 Capacitance Ranges and Drive Limits | Symbol | Parameter | Absolute
min | Recommended min | Recommended
max | Absolute
max | Units | |--------------------------|--|-----------------|-----------------|--------------------|-----------------|-------| | F _{EXC} | Excitation frequency | 30 | 50 | 250 | 500 | KHz | | V _{EXC-TRANS} | Trans Cap excitation voltage
pk-to-pk (centered around
VDDA/2) | 0 | 2.5 | 2.5 | VDDA-0.6 | V | | V _{EXC-ABS} | Abs cap excitation voltage
pk-to-pk (centered around
VDDA/2) | 0 | 2.4 | 2.4 | VDDA-0.9 | V | | C _{SHIELD2DCTS} | Total capacitance to GND on SHIELD2DCTS | - | - | - | 20 | nF | | C _{SHIELDAUX} | Total capacitance to GND on SHIELDAUX | - | - | - | 20 | nF | | C _{ABCD-TRANS} | on only A, C, D of E pin | 0.5 | 1.25 | 2.5 | 5 | рF | | C _{ABCD-ABS} | Total Abs Capacitance to GND on only A, C, D or E pin | 20 | - | 200 | 500 | рF | | C _{AUX-ABS} | Total Abs Capacitance to
GND on only AUX pin | 20 | - | - | 1000 | рF | Table 10.2.10-1: Capacitance Ranges and Drive Limits Note that F_{EXC} , $V_{EXC-TRANS}$, $V_{EXC-ABS}$ can be directly controlled via the device's configuration registers, so ensuring that the limits are met by tuning. The capacitance limits relate to external factors arising from the attached sensor and associated tracking. | Symbol | Parameter | Value | Tolerance | Dielectric | Units | |---------------------|-----------------------------|-------|-----------|------------|-------| | C _{REFCAP} | REFCAP reference capacitors | 220 | 1% | NP0 / COG | рF | Table 10.2.10-2: REFCAP Requirements # 10.2.11 Non-volatile Memory Characteristics | Symbol | Parameter | Range | Units | |-----------------|--------------------------------------|---|--------| | N _{EC} | Number of erase cycles | 10000 | cycles | | t _{DR} | Data retention @ 85°C T _A | 10 | years | | EDAC | Error detection and correction | Detect and correct all
1-bit errors
Detect all 2-bit errors | - | Table 10.2.11-1: Non-volatile Memory Characteristics #### 10.2.12 Device BIST Capabilities - RAM self tests. - NVM EDAC (see 10.2.11 Non-volatile Memory Characteristics). - Code execution protection using Watchdog Timer clocked by separate internal oscillator. - Checksum over NVM. - Checksum over volatile configuration. - Checksum over non-volatile configuration. - Out of range VDDA detection. - Out of range Acquistion Engine reference capacitor checks. - Interrupt pin test. - Cross-check main CPU and RTC/watchdog oscillators against each other. - Configurable "Heartbeat" report to host allows BIST trigger (limited range) and live status plus a cross check of the timing period/CPU main oscillator rate. #### 10.2.13 Sensor BIST Capabilities - All sense channels allow detection of CTS and CDS impedance leakage of up to 200K Ω to any net. - Test can be triggered by host command and optionally run at device boot-up. - Detection of opens on CTS and CDS electrode channel by configurable signal limits. - Test can be triggered by host command and also run periodically using Heartbeat tick. - Separate signal limit tests for Trans Cap, Abs Cap and AUX. - Separate test limits for the middle, edges and corners of a CTS (Trans Cap mode) to improve fault coverage. Doc: TNxD00376 Pg: 53 of 69 Rev: C6 # 10.2.14 2D CTS Diagonal Size Range Guide Figure 10.2.14-1: 2D CTS Diagonal Size Range Guide Doc: TNxD00376 Pg: 54 of 69 Rev: C6 # Appendix A Package Drawings # A.1 LQFP256-EP28281404 # A.1.1 Package Information Figure A.1.1-1: Package Drawing Doc: TNxD00376 Pg: 55 of 69 Rev: C6 ## A.1.2 Footprint Information FOR REFERENCE ONLY Figure A.1.2-1: Footprint Drawing Doc: TNxD00376 Pg: 56 of 69 Rev: C6 ## A.1.3 Layout and Routing Considerations for VDDA tracks To maximize SNR performance special care must be taken when laying out VDDA power traces. The maximum tolerated voltage drop between VDDA pins varies. The table below should be used for estimation of device current consumption into each VDDA pin to allow estimation of the voltage drops in your PCB layout (the IR voltage drop). You must then check that they are within the allowed range as listed below. | Pin | Туре | Max Current (mA) | ΔV | |-----|------|------------------|--| | 17 | VDDA | 25 | | | 49 | VDDA | 25 | | | 67 | VDDA | 50 | | | 86 | VDDA | 25 | | | 104 | VDDA | 50 | $<$ 0.5mV Δ V between these pins | | 130 | VDDA | 25 | Co.onv Av berween mese pins | | 190 | VDDA | 25 | | | 216 | VDDA | 50 | | | 238 | VDDA | 25 | | | 254 | VDDA | 50 | | | 174 | VDDA | 300 | <5mV Δ V from other VDDA power pins | In addition, the device has two VDDC pins, the following shall be observed. | | Pin | Туре | Max Current (mA) | ΔV | |---|-----|------|------------------|---| | Ī | 33 | VDDC | 150 | <10mV Δ V between these two pins | | Ī | 173 | VDDC | 150 | CTOTTY AV Detween mese two pins | The images provided are for general guidance. Gerber files for reference designs can be provided by TouchNetix on demand. Please note: any reference material provided shall be taken as guidance only. PCB designers must ensure to run power/current analysis on their designs to make sure they are compliant with the requirements outlined above. Doc: TNxD00376 Pg: 57 of 69 Rev: C6 Figure A.1.3-1: C-shaped power routing, balanced amongst all VDDA pins. Figure A.1.3-2: Note the use of the widest possible tracking and multiple vias for all VDD tracks. Figure A.1.3-3: Note the wide tracking joining all VDDC pins. Doc: TNxD00376 Pg: 58 of 69 Rev: C6 ### A.1.4 Package Thermal Characteristics $\theta_{\rm JA}$ (junction to ambient ⁴⁰) : **12**°C/W. #### A.1.5 PCB Footprint Notes The LQFP256 package has an exposed center GND pad that must be soldered and via'd to suitable copper regions on a 4-layer PCB to help improve the thermal conductivity from junction to ambient. Follow these rules to achieve the stated thermal performance: 1. Use a center GND PCB pad (to connect to device's exposed pad) which is 10mm x 10mm, using a solder paste stencil that is cross hatched (e.g. 1.5mm square pads) to avoid excessive solder. - 2. The center pad must have a minimum of 81 off, 0.3mm diameter, plugged⁴¹ vias connecting to GND floods on the layers below. - 3. Signal traces should not be routed under the device body to allow maximal copper flood under the device body without adding capacitive burden to the driven shield signals⁴². - 4. Where possible use 2oz copper (finished) on the PCB outer layers to improve heat flow. - 5. Use a GND flood that extends on each layer up to the device pins, under the entire device body area (noting that power trace(s) will likely need to bisect the flood on one inner layer). - 6. Use extra 0.3mm regular or plugged vias placed on a 1.5mm pitch to "stitch" the GND floods together electrically and thermally under the device. - 7. Extend a copper GND flood from underneath the body, past the non-sensing pins (i.e. predominantly on one package edge) on the bottom layer of the PCB to create an extra area of at least 25mm x 25mm. Keep this area wide and continuous and avoid adding narrow necks or meanders so that the area functions as a good thermal conductor away from the device. - 8. For further details please see **TNxAN00037 aXiom Touch Controller Sensor Channel Routing**. If uncertain, please contact TNx. The above rules assume a 4-layer (minimum) PCB and that the design goal is to meet 105°C ambient temperature operation. In situations where a lower operating temperature is required (e.g. Industrial/Medical) these rules can be relaxed to a 2-layer PCB but, special care should be taken to optimize the outer layer copper floods on the rear side to allow enough heat to flow away from the device. Doc: TNxD00376 Pg: 59 of 69 Rev: C6 ⁴⁰When soldered to PCB as described in **A.1.5 PCB Footprint Notes**. ⁴¹To avoid solder wicking from under the body during reflow. $^{^{42}}$ maximum added capacitance to the SHIELD2DCTS or SHIELDAUX nets must not be greater than 100pF. # aXiom AX198A-3D Datasheet # A.1.6 Soldering Package Moisture Sensitivity Level according to JEDEC J-STD-020: MSL 3 Solder Reflow Peak Temperature: 60 s @ 260 °C #### A.2 LFBGA256 ### A.2.1 Package Information Figure A.2.1-1: Package Drawing Doc: TNxD00376 Pg: 61 of 69 Rev: C6 # A.2.2 Footprint Information LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SOLDER PASTE EXAMPLE BASED ON 0.1mm THICK STENCIL # FOR REFERENCE ONLY Figure A.2.2-1: Footprint Drawing Doc: TNxD00376 Pg: 62 of 69 Rev: C6 ## A.2.3 Layout and Routing Considerations for VDDA tracks To maximize SNR performance special care must be taken when laying out VDDA power traces. The maximum tolerated voltage drop between VDDA pins varies. The table below should be used for
estimation of device current consumption into each VDDA pin to allow estimation of the voltage drops in your PCB layout (the IR voltage drop). You must then check that they are within the allowed range as listed below. | Pin | Туре | Max Current (mA) | ΔV | |-----|------|------------------|--| | D1 | VDDA | 25 | | | M1 | VDDA | 25 | | | Tl | VDDA | 50 | | | T6 | VDDA | 25 | | | TII | VDDA | 50 | <0.5mV Δ V between these pins | | T16 | VDDA | 25 | Co.Sitty Av Detweett itlese pills | | A16 | VDDA | 25 | | | A11 | VDDA | 50 | | | A6 | VDDA | 25 | | | A1 | VDDA | 50 | | | E16 | VDDA | 300 | <5mV Δ V from other VDDA power pins | In addition, the device has two VDDC pins, the following shall be observed. | [| Pin | Туре | Max Current (mA) | ΔV | |---|-----|------|------------------|---| | Ī | H1 | VDDC | 150 | <10mV Δ V between these two pins | | Ī | F16 | VDDC | 150 | CTOITTY AV Detween mese two pins | The images provided are for general guidance. Gerber files for reference designs can be provided by TouchNetix on demand. Please note: any reference material provided shall be taken as guidance only. PCB designers must ensure to run power/current analysis on their designs to make sure they are compliant with the requirements outlined above. Doc: TNxD00376 Pg: 63 of 69 Rev: C6 Figure A.2.3-1: C-shaped power routing, balanced amongst all VDDA pins. Figure A.2.3-2: Note the wide tracking joining all VDDC pins. Figure A.2.3-3: Maximise bottom layer ground under LFBGA256 package. Doc: TNxD00376 Pg: 64 of 69 Rev: C6 Figure A.2.3-4: Note that shield seperation is needed between TX and RX channels. This will vary on the profile used in the device. Figure A.2.3-5: Top layer breakout and suggested decoupling placements. Figure A.2.3-6: Suggested inner layer breakout The board stack-up should be a minimum of 6 layers ensuring ground is flooded directly under the LFBGA256 package. The remaining area directly adjacent to the TX and RX signals should be flooded with shield2DCTS. For more information please refer to **TNxAN00037 aXiom Touch Controller Sensor Channel Routing**. If uncertain, please contact TNx. # A.2.4 Package Thermal Characteristics $\theta_{\rm JA}$ (junction to ambient ⁴³) : **23**°C/W. #### A.2.5 Soldering Package Moisture Sensitivity Level according to JEDEC J-STD-020: MSL 3 Solder Reflow Peak Temperature: 60 s @ 260 $^{\circ}$ C Doc: TNxD00376 Pg: 66 of 69 Rev: C6 ⁴³When soldered to PCB as described in **A.2.5 Soldering**. # **Appendix B** References TNxAN00035 aXiom Touch Controller Comms Protocol. TNxAN00037 aXiom Touch Controller Sensor Channel Routing. TNxAN00043 aXiom Touch Controller Bootloader. TNxAN00045 aXiom Touch Controller Comms Quick Start Guide. TNxAN00048 aXiom Touch Controller EMC Report. TNxAN00051 aXiom Driver Guide. TNxAN00052 aXiom Project Flow. TNxAN00056 aXiom Self Test. TNxAN00061 aXiom Touch Controller Reduced Power Mode. TNxD00442 Production Process with aXiom Devices. TNxAN00036 aXiom Touch Controller Haptics Drive. TNxAN00041 aXiom Touch Controller 3D Prox and Hover. TNxAN00053 aXiom Touch Controller 3D Gestures. TNxAN00062 aXiom 3D HID Digitizer Support. TNxAN00079 aXiom Dial on Display. TNxAN00047 aXiom Touch Controller Sensor Testing. TNxAN00042 aXiom Touch Controller Sensor Compatibility. TNxAN00046 aXiom Touch Controller Multi Press Demo Guide. TNxAN00085 aXiom Force Sensing. TNxAN00060 aXiom AX198A Touch Controller Programmer's Guide. TNxAN00071 aXiom Touch Controller AX198A EVK Quick Start Guide. **Note**: Release of the above documents may require a specific NDA to be in place, please contact TouchNetix for more details. Doc: TNxD00376 Pg: 67 of 69 Rev: C6 # Appendix C Legal Copyright and Disclaimer This document is Copyright (c) 2024 TouchNetix Ltd. The device described in this datasheet (or application note) is covered by one or more UK and corresponding international patents or patents pending. TouchNetix®, TouchNetix logo aXiom® and aXiom logo and combinations thereof, and others are registered trademarks or trademarks of TouchNetix Ltd in the UK and other countries DISCLAIMER: The information in this document is provided solely in connection with TouchNetix products. No license, express or implied to any intellectual property right is granted through this document or in connection with the sale of any TouchNetix products. EXCEPT AS SET FORTH IN THE TOUCHNETIX TERMS AND CON-DITIONS OF SALE WHICH ARE AVAILABLE ON REQUEST, TOUCHNETIX ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUD-ING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ANY FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL TOUCHNETIX BE LIABLE FOR ANY DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF THE POSSIBILITY OF SUCH DAMAGES HAS BEEN COMMUNICATED TO TOUCHNETIX. TouchNetix does not makes any representations or warranties with respect to the accuracy or completeness of the contents of this document and always reserves the right to make changes to product specifications and descriptions at any time without notice, although without specific commitment to do so. Unless specifically agreed in advance, TouchNetix products are not suitable for, and shall not be used in, automotive applications. TouchNetix products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. MISSION or SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: TouchNetix products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without the specific written consent of an authorised Director of TouchNetix Ltd. Safety-Critical Applications include, without limitation, systems or devices which are designed to support life. TouchNetix products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by TouchNetix as being of a suitable grade. TouchNetix products are not designed nor intended for use in automotive applications unless specifically designated by TouchNetix as automotive-grade. It is the duty of the designer using the product(s) described in this document to ensure that they are suitable for the intended application and that the performance of the TouchNetix product has been thoroughly verified and qualified in all expected operating conditions and environments. # Appendix D Document History | Revision | Date | Change summary | |----------|------------|--| | A1 | 13/01/2021 | Preliminary release | | A2 | 15/02/2021 | Add notes about Reduced Power Mode, shipping tray details | | A3 | 06/04/2021 | Add tuning header in ref schematic | | A4 | 23/04/2021 | Full document release | | A5 | 09/06/2021 | Correct pin 171,172,253,254 designations in the pin table (no change to pin map or device). Add note about max nodes. Add sensing architecture diagram | | A6 | 06/08/2021 | Correct ref schematic pin out | | A7 | 19/11/2021 | Add power requirements detail and update thermal PCB layout details. Formatting clean ups | | A8 | 28/02/2022 | Updated ordering information. Corrected pin name on Fig, 3.1.1-1 from SLVSCK to SLVSCL. | | Α9 | 10/03/2022 | Added VDDA layout considerations. Changed Pin 167 from NC to GND. | | B1 | 12/06/2022 | Rename to 3D variant. Include AUXn reference caps. | | B2 | 19/08/2022 | Add more details for reference / cal caps. | | В3 | 21/12/2022 | Updates to Grammar, word spacing, punctuation and changes to Absolute Max and I/C characteristics tables. | | B4 | 21/03/2023 | Change to the Ordering Information table, a correction to the Absolute Max value correction for Ts and Tj values, and change measurement criteria for VOH from max to min in the IO tables. | | C1 | 16/06/2023 | Addition of the LFBGA256 package details to the Datasheet and added a new sub-section to highlight specific soldering temperature requirements in line with the ACE-Q100 qualification. | | C2 | 07/09/2023 | Update of a disclaimer to the reference page to highlight that before access is permitted to some documents, an NDA is required. Some referenced documents are hidden from the reference list as not currently shared in the document pack, no longer a used document or not released. Updated reference link for new Dials on display document and added to the reference list. Updated ordering information. Update Dial on Display description. Update the details in the Force Sensing section that describes how the reference capacitors are to be connected. Update reference schematic to demonstrate how the reference capacitors should be placed. | | C3 | 13/08/2024 | Update soldering information for the BGA package. | | C4 | 28/03/2024 | nReset capacitor value corrected to 10nF from 20nF. Added labels to the reference capacitors on the reference schematic plus brief explanation regarding AUX channel. Change reference to shield from Driven Trace (DT)
to Shield2DTCS and ShieldAUX from AUXDT on reference schematic. | | C5 | 01/10/2024 | Changes made to the reference schematics. | | C6 | 11/10/2024 | Added Footprint information and Bootloader part number details. Removed redundant documentation and updated Reference table. | Doc: TNxD00376 Pg: 69 of 69 Rev: C6